题目大意:有一个可重集$S$,有两个操作:

  1. $1\;l\;r:$表示把$S$变为$S\cup[l,r]$
  2. $2:$表示将$S$从小到大排序,记为$a_1,a_2,\dots,a_n$,然后求出$\bigoplus\limits_{i=2}^n(a_i^2-a_{i-1}^2)$,$\bigoplus$表示异或

题解:假设$a_1,a_2,\dots,a_n=[l,l+n)$,发现$\bigoplus\limits_{i=2}^n(a_i^2-a_{i-1}^2)=(2l+1)\oplus(2l+3)\oplus\dots\oplus(2l+2n-1)$,然后这玩意儿肯定可以打表找规律什么的$O(1)$求。

题目转化为如何维护这东西,发现这个集合重复不重复没有关系(写一下式子就知道了),可以动态开点线段树,把整个区间都被覆盖的节点打个标记,处理一下两个区间交接的地方就好了

卡点:

C++ Code:

#include <algorithm>
#include <cstdio>
#include <cctype>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
while (isspace(ch = getchar())) ;
for (x = ch & 15; isdigit(ch = getchar()); ) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 300010
inline int calc(const int x) {
switch (x & 3) {
case 0: return 1;
case 1: return x - 1 << 1;
case 2: return 3;
case 3: return x << 1;
}
return 20040826;
}
inline long long sqr(const int x) { return static_cast<long long> (x) * x; } namespace SgT {
#define N (maxn * 19)
const int maxl = 1, maxr = 1e9;
long long V[N];
bool tg[N];
int lc[N], rc[N], Lp[N], Rp[N];
int root, idx; int L, R;
void __modify(int &rt, const int l, const int r) {
if (!rt) rt = ++idx;
if (tg[rt]) return ;
if (L <= l && R >= r) {
Lp[rt] = l, Rp[rt] = r, tg[rt] = true;
V[rt] = calc(r) ^ calc(l);
return ;
}
const int mid = l + r >> 1;
if (L <= mid) __modify(lc[rt], l, mid);
if (R > mid) __modify(rc[rt], mid + 1, r); const int lc = SgT::lc[rt], rc = SgT::rc[rt];
Lp[rt] = Lp[lc] ? Lp[lc] : Lp[rc];
Rp[rt] = Rp[rc] ? Rp[rc] : Rp[lc];
if (Rp[lc] && Lp[rc]) V[rt] = V[lc] ^ V[rc] ^ (sqr(Lp[rc]) - sqr(Rp[lc]));
else V[rt] = V[lc] | V[rc];
if (tg[lc] && tg[rc]) tg[rt] = true;
}
void modify(const int __L, const int __R) {
L = __L, R = __R;
__modify(root, maxl, maxr);
}
#undef N
} int main() {
for (int n = read(); n; --n) {
int op = read();
if (op == 1) {
static int l, r;
l = read(), r = read();
SgT::modify(l, r);
} else printf("%lld\n", SgT::V[SgT::root]);
}
return 0;
}

  

[洛谷P5105]不强制在线的动态快速排序的更多相关文章

  1. 洛谷 P5105 不强制在线的动态快速排序

    P5105 不强制在线的动态快速排序 题目背景 曦月最近学会了快速排序,但是她很快地想到了,如果要动态地排序,那要怎么办呢? 题目描述 为了研究这个问题,曦月提出了一个十分简单的问题 曦月希望维护一个 ...

  2. P5105 不强制在线的动态快速排序

    P5105 不强制在线的动态快速排序 $\bigoplus \limits_{i=2}^n (a_i^2-a_{i-1}^2) = \bigoplus \limits_{i=2}^n (a_i-a_{ ...

  3. luogu P5105 不强制在线的动态快速排序

    前言 考试的时候居然想错了区间贡献,mdzz 思路 题目看着很方啊,难道要树套树? 但数据范围提醒我们,是nlogn的复杂度 Sort(S)的定义是不是很鬼畜 但我们不动脑子的打表容易发现 连续区间[ ...

  4. luoguP5105 不强制在线的动态快速排序 [官方?]题解 线段树 / set

    不强制在线的动态快速排序 题解 算法一 按照题意模拟 维护一个数组,每次直接往数组后面依次添加\([l, r]\) 每次查询时,暴力地\(sort\)查询即可 复杂度\(O(10^9 * q)\),期 ...

  5. luoguP5105 不强制在线的动态快速排序

    emm 可重集合没用用.直接变成不可重复集合 有若干个区间 每个区间形如[L,R] [L,R]计算的话,就是若干个连续奇数的和.拆位统计1的个数 平衡树维护 加入一个[L,R],把相交的区间合并.之后 ...

  6. [Luogu5105]不强制在线的动态快速排序

    首先集合去重不影响答案,然后打表易得连续自然数平方差异或前缀和的规律,于是问题就变为在线维护区间求并同时更新答案,set记录所有区间,每次暴力插入删除即可.由于每个区间至多只会插入删除一次,故均摊复杂 ...

  7. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  8. 洛谷P3676 小清新数据结构题 [动态点分治]

    传送门 思路 这思路好妙啊! 首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢. 脑洞大开想到这样一个式子: \[ \sum_{x} sum_x(All-sum_x) \] 其中\ ...

  9. 【洛谷】P4643 【模板】动态dp

    题解 在冬令营上听到冬眠的东西,现在都是板子了猫锟真的是好毒瘤啊(雾) (立个flag,我去thusc之前要把WC2018T1乱搞过去= =) 好的,我们可以参考猫锟的动态动态dp的课件,然后你发现你 ...

随机推荐

  1. Python递归算法入门

    递归是一种算法,它在编程里面有着广泛的应用: 1. 递归必须满足哪两个基本条件? 一.函数调用自身 二.设置了正确的返回条件 2. 思考一下,按照递归的特性,在编程中有没有不得不使用递归的情况? 答: ...

  2. Unity操作小技巧

    1.操作类 1)F:选择物体后聚焦 2)V:选择物体的顶点,顶点吸附 3)Ctrl:摁住后拖动物体,可以按照系统设置的步长进行移动(Edit -> Snap setting) 4)Q W E R ...

  3. Pyhton网络爬虫实例_豆瓣电影排行榜_Xpath方法爬取

    -----------------------------------------------------------学无止境------------------------------------- ...

  4. 小球下落 (Dropping Balls,UVA 679)

    题目描述: 题目思路: 1.直接用数组模拟二叉树下落过程 //超时 #include <iostream> #include <cstring> using namespace ...

  5. Firefox-css-hack

    先记下:之后研究.试了一下,新版本FF-32.0效果不错,低版本还没测试. @-moz-document url-prefix() { .container { ... }}

  6. Dask教程

    Dask 介绍 Dask是一款用于分析计算的灵活并行计算库. Dask由两部分组成: 针对计算优化的动态任务调度.这与Airflow,Luigi,Celery或Make类似,但针对交互式计算工作负载进 ...

  7. HashMap 阅读

    最近研究了一下java中比较常见的map类型,主要有HashMap,HashTable,LinkedHashMap和concurrentHashMap.这几种map有各自的特性和适用场景.使用方法的话 ...

  8. error:no module named StringIO or cStringIO

    一般遇到没有某个模块问题的时候,通常的解决方法是pip相应的模块: 不过,鉴于Python2和python3的不同(让人头疼) 解决方法:在python3中,该模块被新的模块取代,即io. 重新imp ...

  9. LeetCode - 268. Missing Number - stable_sort应用实例 - ( C++ ) - 解题报告

    1.题目大意 Given an array nums, write a function to move all 0's to the end of it while maintaining the ...

  10. leetcode个人题解——two sum

    这是leetcode第一题,通过较为简单. 第一题用来测试的,用的c,直接暴力法过, /** * Note: The returned array must be malloced, assume c ...