https://www.lydsy.com/JudgeOnline/problem.php?id=5334

小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型: 
1 m: x = x  *  m ,输出 x%mod;
2 pos: x = x /  第pos次操作所乘的数(保证第pos次操作一定为类型1,对于每一个类型1 的操作至多会被除一次),输出x%mod

都懒得写题解了……就对着时间建一个线段树,区间维护乘积即可。

真·大水题。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int Q=1e5+;
inline ll read(){
ll X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int q;
ll p,tr[Q*];
inline void upt(int a){tr[a]=tr[a<<]*tr[a<<|]%p;}
void build(int a,int l,int r){
if(l==r){
tr[a]=;return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
upt(a);
}
void mdy(int a,int l,int r,int x,ll y){
if(l==r){
tr[a]=y;
return;
}
int mid=(l+r)>>;
if(x<=mid)mdy(a<<,l,mid,x,y);
else mdy(a<<|,mid+,r,x,y);
upt(a);
}
int main(){
int T=read();
while(T--){
q=read(),p=read();
build(,,q);
for(int i=;i<=q;i++){
int op=read();
if(op==){
ll m=read();
mdy(,,q,i,m);
}else{
int pos=read();
mdy(,,q,pos,);
}
printf("%lld\n",tr[]);
}
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5334:[TJOI2018]数学计算——题解的更多相关文章

  1. BZOJ5334: [Tjoi2018]数学计算

    BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...

  2. [BZOJ5334][TJOI2018]数学计算(exgcd/线段树)

    模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决. $O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了. #incl ...

  3. TJOI2018 数学计算 题解

    题目 小豆现在有一个数 \(x\) ,初始值为 \(1\) . 小豆有 \(Q\) 次操作,操作有两种类型: \(m\): \(x=x×m\),输出 \(x\mod M\) : \(pos\): \( ...

  4. BZOJ5334 [TJOI2018] 数学计算 【线段树分治】

    题目分析: 大概是考场上的签到题.首先mod不是质数,所以不能求逆元.注意到有加入操作和删除操作.一个很典型的想法就是线段树分治.建立时间线段树然后只更改有影响的节点,最后把所有标记下传.时间复杂度是 ...

  5. BZOJ5334:[TJOI2018]数学计算(线段树)

    Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:  1 m: x = x  *  m ,输出 x%mod; 2 pos: x = x /  第pos次操作所乘 ...

  6. 【BZOJ5334】数学计算(线段树)

    [BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...

  7. [Tjoi2018]数学计算

    [Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...

  8. 题解【洛谷P4588】[TJOI2018]数学计算

    题目描述 小豆现在有一个数\(x\),初始值为\(1\).小豆有\(Q\)次操作,操作有两种类型: \(1\;m\):\(x=x\times m\)输出\(x\%mod\); \(2\;pos\):\ ...

  9. 【题解】Luogu P4588 [TJOI2018]数学计算

    原题传送门 这题是线段树的模板题 显而易见,直接模拟是不好模拟的(取模后就不好再除了) 我们按照时间来建一颗线段树 线段树初始值都为1,用来维护乘积 第一种操作就在当前时间所对应的节点上把乘数改成m ...

随机推荐

  1. 友晶Altera Cyclone V GX Starter Kit开发板使用ADC-第一篇

    1. 拿到板子在,做工很好,属于GX系列,GX应该是高速收发器 2. 去探究下GX是什么用途,大约有6个型号,这个板子是5CGXFX5,有77 LE逻辑单元,这个收发器不知道是什么?6个 3.125G ...

  2. uvaoj 1081510815 - Andy's First Dictionary(set应用)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=835&page= ...

  3. GIt学习第二天之版本回退、工作区和暂存区

    搬运自 ‘廖雪峰的官方网站’ 地址:https://www.liaoxuefeng.com/ 1.版本回退 在Git中,我们用git log命令显示从最近到最远的提交日志,如果嫌输出信息太多,看得眼花 ...

  4. flask源码走读

    Flask-Origin 源码版本 一直想好好理一下flask的实现,这个项目有Flask 0.1版本源码并加了注解,挺清晰明了的,我在其基础上完成了对Werkzeug的理解部分,大家如果想深入学习的 ...

  5. 如何处理 jQuery $(window).resize() 中的方法被多次执行的小问题

    引言: 估计很多同志们在编写浏览器resize()的方法时,都会遇到这样的情况: 当拖动浏览器的边角时,页面中的一些效果随浏览器大小的改变而触发,这一过程开始到结束,resize() 中的方法被执行了 ...

  6. 使用js跳转手机站url的若干注意点

    引子: 去年年底公司开发手机站平台,经历了前期的用户群.市场调查,产品需求分析,产品原型设计,ui前端到程序开发上线测试等等工作,终于上线...此处略去本人作为前端开发的心情. 应该说,我们的手机站平 ...

  7. kafka stream 低级别的Processor API动态生成拓扑图

    public class KafkaSream { public static void main(String[] args) { Map<String, Object> props = ...

  8. HDU 2494/POJ 3930 Elevator(模拟)(2008 Asia Regional Beijing)

    Description Too worrying about the house price bubble, poor Mike sold his house and rent an apartmen ...

  9. 初学c#(又要打代码了好难)

    因为我原来从没有学过C#,所以要重新看一个语言的基本语法,仔细阅读了老师的作业要求,发现第一个10分的作业如果要用c语言写我是可以完成的,于是定个小目标就是在周日前完成作业的第一步.今天我在菜鸟教程的 ...

  10. oracle数据库之存储函数和过程

    一.引言     ORACLE 提供可以把 PL/SQL 程序存储在数据库中,并可以在任何地方来运行它.这样就叫存储过程或函数.过程和函数统称为 PL/SQL 子程序,他们是被命名的 PL/SQL 块 ...