Django-model进阶(中介模型,查询优化,extra,整体插入)
QuerySet
可切片
使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。
1
|
>>> Entry.objects. all ()[:5] # (LIMIT 5) |
>>> Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。
可迭代
articleList=models.Article.objects.all() for article in articleList:
print(article.title)
惰性查询
查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。
1
2
3
4
5
6
|
queryResult=models.Article.objects. all () # not hits database print(queryResult) # hits database for article in queryResult: print(article.title) # hits database |
一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。
缓存机制
每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。
在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。
请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:
1
2
|
print([a.title for a in models.Article.objects. all ()]) print([a.create_time for a in models.Article.objects. all ()]) |
这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:
1
2
3
|
queryResult=models.Article.objects. all () print([a.title for a in queryResult]) print([a.create_time for a in queryResult]) |
何时查询集不会被缓存?
查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。
例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:
1
2
3
|
>>> queryset = Entry.objects. all () >>> print queryset[ 5 ] # Queries the database >>> print queryset[ 5 ] # Queries the database again |
然而,如果已经对全部查询集求值过,则将检查缓存:
1
2
3
4
|
>>> queryset = Entry.objects. all () >>> [entry for entry in queryset] # Queries the database >>> print queryset[ 5 ] # Uses cache >>> print queryset[ 5 ] # Uses cache |
下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:
1
2
3
4
|
>>> [entry for entry in queryset] >>> bool (queryset) >>> entry in queryset >>> list (queryset) |
注:简单地打印查询集不会填充缓存。
exists()与iterator()方法
exists:
简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:
if queryResult.exists():
#SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
print("exists...")
iterator:
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。
objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
print(obj.title)
当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。
总结:
queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。
中介模型
处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField 就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。
例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。
对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from django.db import models class Person(models.Model): name = models.CharField(max_length = 128 ) def __str__( self ): # __unicode__ on Python 2 return self .name class Group(models.Model): name = models.CharField(max_length = 128 ) members = models.ManyToManyField(Person, through = 'Membership' ) def __str__( self ): # __unicode__ on Python 2 return self .name class Membership(models.Model): person = models.ForeignKey(Person) group = models.ForeignKey(Group) date_joined = models.DateField() invite_reason = models.CharField(max_length = 64 ) |
既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
>>> ringo = Person.objects.create(name = "Ringo Starr" ) >>> paul = Person.objects.create(name = "Paul McCartney" ) >>> beatles = Group.objects.create(name = "The Beatles" ) >>> m1 = Membership(person = ringo, group = beatles, ... date_joined = date( 1962 , 8 , 16 ), ... invite_reason = "Needed a new drummer." ) >>> m1.save() >>> beatles.members. all () [<Person: Ringo Starr>] >>> ringo.group_set. all () [<Group: The Beatles>] >>> m2 = Membership.objects.create(person = paul, group = beatles, ... date_joined = date( 1960 , 8 , 1 ), ... invite_reason = "Wanted to form a band." ) >>> beatles.members. all () [<Person: Ringo Starr>, <Person: Paul McCartney>] |
与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members = [...])来创建关系:
1
2
3
4
5
6
|
# THIS WILL NOT WORK >>> beatles.members.add(john) # NEITHER WILL THIS >>> beatles.members.create(name = "George Harrison" ) # AND NEITHER WILL THIS >>> beatles.members = [john, paul, ringo, george] |
为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的add、create 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。
remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:
1
2
3
4
5
|
>>> # Beatles have broken up >>> beatles.members.clear() >>> # Note that this deletes the intermediate model instances >>> Membership.objects. all () [] |
查询优化
表数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
class UserInfo(AbstractUser): "" " 用户信息 " "" nid = models.BigAutoField(primary_key= True ) nickname = models.CharField(verbose_name= '昵称' , max_length=32) telephone = models.CharField(max_length=11, blank= True , null = True , unique = True , verbose_name= '手机号码' ) avatar = models.FileField(verbose_name= '头像' ,upload_to = 'avatar/' , default = "/avatar/default.png" ) create_time = models.DateTimeField(verbose_name= '创建时间' , auto_now_add= True ) fans = models.ManyToManyField(verbose_name= '粉丝们' , to = 'UserInfo' , through= 'UserFans' , related_name= 'f' , through_fields=( 'user' , 'follower' )) def __str__(self): return self.username class UserFans(models.Model): "" " 互粉关系表 " "" nid = models.AutoField(primary_key= True ) user = models.ForeignKey(verbose_name= '博主' , to = 'UserInfo' , to_field= 'nid' , related_name= 'users' ) follower = models.ForeignKey(verbose_name= '粉丝' , to = 'UserInfo' , to_field= 'nid' , related_name= 'followers' ) class Blog(models.Model): "" " 博客信息 " "" nid = models.BigAutoField(primary_key= True ) title = models.CharField(verbose_name= '个人博客标题' , max_length=64) site = models.CharField(verbose_name= '个人博客后缀' , max_length=32, unique = True ) theme = models.CharField(verbose_name= '博客主题' , max_length=32) user = models.OneToOneField( to = 'UserInfo' , to_field= 'nid' ) def __str__(self): return self.title class Category(models.Model): "" " 博主个人文章分类表 " "" nid = models.AutoField(primary_key= True ) title = models.CharField(verbose_name= '分类标题' , max_length=32) blog = models.ForeignKey(verbose_name= '所属博客' , to = 'Blog' , to_field= 'nid' ) class Article(models.Model): nid = models.BigAutoField(primary_key= True ) title = models.CharField(max_length=50, verbose_name= '文章标题' ) desc = models.CharField(max_length=255, verbose_name= '文章描述' ) read_count = models.IntegerField( default =0) comment_count= models.IntegerField( default =0) up_count = models.IntegerField( default =0) down_count = models.IntegerField( default =0) category = models.ForeignKey(verbose_name= '文章类型' , to = 'Category' , to_field= 'nid' , null = True ) create_time = models.DateField(verbose_name= '创建时间' ) blog = models.ForeignKey(verbose_name= '所属博客' , to = 'Blog' , to_field= 'nid' ) tags = models.ManyToManyField( to = "Tag" , through= 'Article2Tag' , through_fields=( 'article' , 'tag' ), ) class ArticleDetail(models.Model): "" " 文章详细表 " "" nid = models.AutoField(primary_key= True ) content = models.TextField(verbose_name= '文章内容' , ) article = models.OneToOneField(verbose_name= '所属文章' , to = 'Article' , to_field= 'nid' ) class Comment(models.Model): "" " 评论表 " "" nid = models.BigAutoField(primary_key= True ) article = models.ForeignKey(verbose_name= '评论文章' , to = 'Article' , to_field= 'nid' ) content = models.CharField(verbose_name= '评论内容' , max_length=255) create_time = models.DateTimeField(verbose_name= '创建时间' , auto_now_add= True ) parent_comment = models.ForeignKey( 'self' , blank= True , null = True , verbose_name= '父级评论' ) user = models.ForeignKey(verbose_name= '评论者' , to = 'UserInfo' , to_field= 'nid' ) up_count = models.IntegerField( default =0) def __str__(self): return self.content class ArticleUpDown(models.Model): "" " 点赞表 " "" nid = models.AutoField(primary_key= True ) user = models.ForeignKey( 'UserInfo' , null = True ) article = models.ForeignKey( "Article" , null = True ) models.BooleanField(verbose_name= '是否赞' ) class CommentUp(models.Model): "" " 点赞表 " "" nid = models.AutoField(primary_key= True ) user = models.ForeignKey( 'UserInfo' , null = True ) comment = models.ForeignKey( "Comment" , null = True ) class Tag(models.Model): nid = models.AutoField(primary_key= True ) title = models.CharField(verbose_name= '标签名称' , max_length=32) blog = models.ForeignKey(verbose_name= '所属博客' , to = 'Blog' , to_field= 'nid' ) class Article2Tag(models.Model): nid = models.AutoField(primary_key= True ) article = models.ForeignKey(verbose_name= '文章' , to = "Article" , to_field= 'nid' ) tag = models.ForeignKey(verbose_name= '标签' , to = "Tag" , to_field= 'nid' ) |
select_related
简单使用
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。
select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。
简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。
下面的例子解释了普通查询和select_related() 查询的区别。
查询id=2的文章的分类名称,下面是一个标准的查询:
1
2
3
4
5
|
# Hits the database. article = models.Article.objects.get(nid = 2 ) # Hits the database again to get the related Blog object. print (article.category.title) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
'' ' SELECT "blog_article"."nid", "blog_article"."title", "blog_article"."desc", "blog_article"."read_count", "blog_article"."comment_count", "blog_article"."up_count", "blog_article"."down_count", "blog_article"."category_id", "blog_article"."create_time", "blog_article"."blog_id", "blog_article"."article_type_id" FROM "blog_article" WHERE "blog_article"."nid" = 2; args=(2,) SELECT "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id" FROM "blog_category" WHERE "blog_category"."nid" = 4; args=(4,) ' '' |
如果我们使用select_related()函数:
1
2
3
4
5
6
7
|
articleList=models.Article.objects.select_related( "category" ). all () for article_obj in articleList: # Doesn't hit the database , because article_obj.category # has been prepopulated in the previous query. print(article_obj.category.title) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , "blog_article" . "desc" , "blog_article" . "read_count" , "blog_article" . "comment_count" , "blog_article" . "up_count" , "blog_article" . "down_count" , "blog_article" . "category_id" , "blog_article" . "create_time" , "blog_article" . "blog_id" , "blog_article" . "article_type_id" , "blog_category" . "nid" , "blog_category" . "title" , "blog_category" . "blog_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ( "blog_article" . "category_id" = "blog_category" . "nid" ); |
多外键查询
这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:
1
2
|
article=models.Article.objects.select_related( "category" ).get(nid=1) print(article.articledetail) |
观察logging结果,发现依然需要查询两次,所以需要改为:
1
2
|
article=models.Article.objects.select_related( "category" , "articledetail" ).get(nid=1) print(article.articledetail) |
或者:
article=models.Article.objects
.select_related("category")
.select_related("articledetail")
.get(nid=1) # django 1.7 支持链式操作
print(article.articledetail)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... "blog_category" . "nid" , "blog_category" . "title" , "blog_category" . "blog_id" , "blog_articledetail" . "nid" , "blog_articledetail" . "content" , "blog_articledetail" . "article_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ( "blog_article" . "category_id" = "blog_category" . "nid" ) LEFT OUTER JOIN "blog_articledetail" ON ( "blog_article" . "nid" = "blog_articledetail" . "article_id" ) WHERE "blog_article" . "nid" = 1; args=(1,) |
深层查询
1
2
3
4
|
# 查询id=1的文章的用户姓名 article=models.Article.objects.select_related( "blog" ).get(nid=1) print(article.blog. user .username) |
依然需要查询两次:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... "blog_blog" . "nid" , "blog_blog" . "title" , FROM "blog_article" INNER JOIN "blog_blog" ON ( "blog_article" . "blog_id" = "blog_blog" . "nid" ) WHERE "blog_article" . "nid" = 1; SELECT "blog_userinfo" . "password" , "blog_userinfo" . "last_login" , ...... FROM "blog_userinfo" WHERE "blog_userinfo" . "nid" = 1; |
这是因为第一次查询没有query到userInfo表,所以,修改如下:
1
2
|
article=models.Article.objects.select_related( "blog__user" ).get(nid=1) print(article.blog. user .username) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... "blog_blog" . "nid" , "blog_blog" . "title" , ...... "blog_userinfo" . "password" , "blog_userinfo" . "last_login" , ...... FROM "blog_article" INNER JOIN "blog_blog" ON ( "blog_article" . "blog_id" = "blog_blog" . "nid" ) INNER JOIN "blog_userinfo" ON ( "blog_blog" . "user_id" = "blog_userinfo" . "nid" ) WHERE "blog_article" . "nid" = 1; |
总结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
- 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
prefetch_related()
对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。
prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。
1
2
3
4
5
|
# 查询所有文章关联的所有标签 article_obj=models.Article.objects. all () for i in article_obj: print(i.tags. all ()) #4篇文章: hits database 5 |
改为prefetch_related:
1
2
3
4
5
|
# 查询所有文章关联的所有标签 article_obj=models.Article.objects.prefetch_related( "tags" ). all () for i in article_obj: print(i.tags. all ()) #4篇文章: hits database 2 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... FROM "blog_article" ; SELECT ( "blog_article2tag" . "article_id" ) AS "_prefetch_related_val_article_id" , "blog_tag" . "nid" , "blog_tag" . "title" , "blog_tag" . "blog_id" FROM "blog_tag" INNER JOIN "blog_article2tag" ON ( "blog_tag" . "nid" = "blog_article2tag" . "tag_id" ) WHERE "blog_article2tag" . "article_id" IN (1, 2, 3, 4); |
extra
extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)
有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句
extra可以指定一个或多个 参数,例如 select, where or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做
参数之select
The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。
queryResult=models.Article
.objects.extra(select={'is_recent': "create_time > '2017-09-05'"})
结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.
练习:
# in sqlite:
article_obj=models.Article.objects
.filter(nid=1)
.extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
.values("standard_time","nid","title")
print(article_obj)
# <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
参数之where / tables
您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。
where和tables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。
举例来讲:
queryResult=models.Article
.objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])
整体插入
创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:
Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])
...更优于:
Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")
注意该方法有很多注意事项,所以确保它适用于你的情况。
这也可以用在ManyToManyFields中,所以:
my_band.members.add(me, my_friend)
...更优于:
my_band.members.add(me)
my_band.members.add(my_friend)
...其中Bands和Artists具有多对多关联。
Django-model进阶(中介模型,查询优化,extra,整体插入)的更多相关文章
- 第十四篇Django-model进阶(中介模型,查询优化,extra,整体插入)
Django-model进阶(中介模型,查询优化,extra,整体插入) 阅读目录(Content) 中介模型 查询优化 extra 整体插入 中介模型 处理类似搭配 pizza 和 topping ...
- Django model进阶
Django-model进阶 QuerySet 可切片 使用Python 的切片语法来限制查询集记录的数目 .它等同于SQL 的LIMIT 和OFFSET 子句. >>> Ent ...
- Django——model进阶(待完成)
https://www.cnblogs.com/yuanchenqi/articles/7570003.html 一.QuerySet 1.可切片 使用Python 的切片语法来限制查询集记录的数目 ...
- Django QuerySet和中介模型
笔记如下 一.QuerySet QuerySet是什么? 类似列表里边存着对象 只和ORM有关系 from app01.models import Book def qDemo(request): b ...
- Django Model 进阶
回顾: 定义 models settings.py激活app才能使用models migrations:版本控制,当更改库表结构时可以处理数据 增删改查 常见Field 模型的价值在于定义数据模型,使 ...
- model进阶(queryset,中介模型,查询优化,extra)
queryset 方法 ############# 可切片 def queryTest(request): ret = models.Atricle.objects.all() 数据库查询 print ...
- Django进阶之QuerySet和中介模型
QuerySet QuerySet是查询集,就是传到服务器上的url里面的查询内容.其形态类似于Python的列表,列表中的元素是QuerySet对象.支持大部分列表的内置方法. 可切片 QueryS ...
- 07.Django学习之model进阶
一 QuerySet 可切片 使用Python 的切片语法来限制查询集记录的数目 .它等同于SQL 的LIMIT 和OFFSET 子句. >>> Entry.objects.all( ...
- Django学习之model进阶
一 QuerySet 可切片 使用Python 的切片语法来限制查询集记录的数目 .它等同于SQL 的LIMIT 和OFFSET 子句. >>> Entry.objects.al ...
随机推荐
- lykchat信息发送系统
lykchat信息发送系统是Python3开发的,通过模拟微信网页端,基于个人微信号,为系统管理人员提供信息发送工具. 实现的功能有用户登录管理.微信登陆管理和微信信息发送功能. 代码地址:https ...
- 美国风投行业50年数据揭示的10条VC投资秘密法则
美国风投行业50年数据揭示的10条VC投资秘密法则 来源:金融女王(微信号:FintechQ) 作者:Hatim Tyabji & Vijay Sathe 本文编译自以下外媒文章: http ...
- 网络管理命令list
网络管理 axel 多线程下载工具 tcpreplay 将PCAP包重新发送,用于性能或者功能测试 hping3 测试网络及主机的安全 ssh-copy-id 把本地的ssh公钥文件安装到远程主机对应 ...
- SQLAlchemy会话与事务控制:互斥锁和共享锁
关于sqlalchemy,可以细度这个网址:http://www.codexiu.cn/python/SQLAlchemy%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B/73 ...
- 七.使用fastJson解析器
1.到入jar包 <!-- 添加fastjson 依赖包. --> <dependency> <groupId>com.alibaba</groupId> ...
- unity3d的矩阵元素存储方式
想知道u3d矩阵各个元素的存储方式,所以测试了一下 Matrix4x4 m = Matrix4x4.TRS(new Vector3(1, 2, 3), Quaternion.Euler(0, 0, 3 ...
- Efficient GPU Screen-Space Ray Tracing
http://jcgt.org/published/0003/04/04/paper.pdf 一个号称只有2ms的实时gpu光线追踪 screen space reflection用到了 和其他ray ...
- 批处理命令中set定义的两种变量介绍 计算机基础知识
摘自: http://www.amhl.net/wenzhang/DianNaoChangShi/20101201/127422.html 所谓的自定义变量,就是由我们来给它赋予值的变量. ①赋值变量 ...
- git 超前一个版本 落后一个版本的解决方案
在使用SourceTree的时候经常会遇见超前一个版本,落后N个版本的情况,遇见这种情况应该怎么办呢? 首先打开终端,最好是从SourceTree里面打开,菜单栏有个终端按钮. 然后输入: $ git ...
- Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)
Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理) http://xiguada.org/spark-shuffle-direct-buffer-oom/ 问题描述 Spar ...