HDU.1575 Tr A ( 矩阵快速幂)

点我挑战题目

题意分析

直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可。

由于此题矩阵直接给出的,题目比较裸。

代码总览

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N;
int MOD;
typedef struct{
int matrix[Dmax][Dmax];
void init()//初始化为单位矩阵
{
memset(matrix,0,sizeof(matrix));
for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
}
}MAT; MAT ADD(MAT a, MAT b)
{
for(int i = 0; i<N;++i){
for(int j = 0;j<N;++j){
a.matrix[i][j] +=b.matrix[i][j];
a.matrix[i][j] %= MOD;
}
}
return a;
}
MAT MUL(MAT a, MAT b)
{
MAT ans;
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
ans.matrix[i][j] = 0;
for(int k = 0; k<N;++k){
ans.matrix[i][j] += ( (a.matrix[i][k]) % MOD * (b.matrix[k][j]) % MOD) % MOD;
}
ans.matrix[i][j] %= MOD;
}
}
return ans;
}
MAT POW(MAT a, int t)
{
MAT ans; ans.init();
while(t){
if(t&1) ans = MUL(ans,a);
t>>=1;
a = MUL(a,a);
}
return ans;
}
void OUT(MAT a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
printf("%5d",a.matrix[i][j]);
}
printf("\n");
}
}
void IN(MAT & a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
scanf("%d",&a.matrix[i][j]);
}
}
}
void CAL(MAT a)
{
long long ans = 0;
for(int i = 0; i<N;++i) ans+=a.matrix[i][i];
ans %= MOD;
printf("%lld\n",ans);
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--){
MOD = 9973;
int k;MAT m;
scanf("%d %d",&N,&k);
IN(m);
m = POW(m,k);
CAL(m); }
return 0;
}

HDU.1575 Tr A ( 矩阵快速幂)的更多相关文章

  1. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  2. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  3. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  4. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  5. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  6. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  7. HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    ...

  8. HDU 6395 Sequence 【矩阵快速幂 && 暴力】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)   ...

  9. HDU 5667 Sequence【矩阵快速幂+费马小定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...

随机推荐

  1. lunix安装

    https://www.cnblogs.com/wcwen1990/p/7630545.html

  2. Objective-C 封装 继承 多态

    封装 #import <Foundation/Foundation.h> @interface Person : NSObject { //@public int _age; } - (v ...

  3. java字符转义

    之前对java字符转义这一块稍作了解,在这里理理自己主观浅显的理解 这里会谈谈字符编码的是另一种问题和转义没有关系 以下面代码做分析 System.out.println("a". ...

  4. centos7安装zabbix3.2详解

    服务器端安装 1.安装仓库 rpm -ivh http://repo.zabbix.com/zabbix/3.2/rhel/7/x86_64/zabbix-release-3.2-1.el7.noar ...

  5. day-14 回归中的相关系数和决定系数概念及Python实现

    衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...

  6. 名人问题 算法解析与Python 实现 O(n) 复杂度 (以Leetcode 277. Find the Celebrity为例)

    1. 题目描述 Problem Description Leetcode 277. Find the Celebrity Suppose you are at a party with n peopl ...

  7. es6从零学习(一)let 和 const 命令

    es6从零学习(一):let 和 const 命令 一:let 变量 1.块级作用域{}:let只在自己的块级作用域内有效. for(let i =0;i<3;i++) { console.lo ...

  8. opencart

    1. Deleting english language, what happens?   Disable English tab , category and products     1) Fir ...

  9. 理解windows模型

    同步 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回.按照这个定义,其实绝大多数函数都是同步调用(例如sin, isdigit等).但是一般而言,我们在说同步.异步的时候,特指 ...

  10. iOS开发开辟线程总结--NSThread

    1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue ...