HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂)
题意分析
直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可。
由于此题矩阵直接给出的,题目比较裸。
代码总览
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N;
int MOD;
typedef struct{
int matrix[Dmax][Dmax];
void init()//初始化为单位矩阵
{
memset(matrix,0,sizeof(matrix));
for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
}
}MAT;
MAT ADD(MAT a, MAT b)
{
for(int i = 0; i<N;++i){
for(int j = 0;j<N;++j){
a.matrix[i][j] +=b.matrix[i][j];
a.matrix[i][j] %= MOD;
}
}
return a;
}
MAT MUL(MAT a, MAT b)
{
MAT ans;
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
ans.matrix[i][j] = 0;
for(int k = 0; k<N;++k){
ans.matrix[i][j] += ( (a.matrix[i][k]) % MOD * (b.matrix[k][j]) % MOD) % MOD;
}
ans.matrix[i][j] %= MOD;
}
}
return ans;
}
MAT POW(MAT a, int t)
{
MAT ans; ans.init();
while(t){
if(t&1) ans = MUL(ans,a);
t>>=1;
a = MUL(a,a);
}
return ans;
}
void OUT(MAT a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
printf("%5d",a.matrix[i][j]);
}
printf("\n");
}
}
void IN(MAT & a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
scanf("%d",&a.matrix[i][j]);
}
}
}
void CAL(MAT a)
{
long long ans = 0;
for(int i = 0; i<N;++i) ans+=a.matrix[i][i];
ans %= MOD;
printf("%lld\n",ans);
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--){
MOD = 9973;
int k;MAT m;
scanf("%d %d",&N,&k);
IN(m);
m = POW(m,k);
CAL(m);
}
return 0;
}
HDU.1575 Tr A ( 矩阵快速幂)的更多相关文章
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- hdu 2604 Queuing(矩阵快速幂乘法)
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...
- HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others) ...
- HDU 6395 Sequence 【矩阵快速幂 && 暴力】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others) ...
- HDU 5667 Sequence【矩阵快速幂+费马小定理】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...
随机推荐
- lunix安装
https://www.cnblogs.com/wcwen1990/p/7630545.html
- Objective-C 封装 继承 多态
封装 #import <Foundation/Foundation.h> @interface Person : NSObject { //@public int _age; } - (v ...
- java字符转义
之前对java字符转义这一块稍作了解,在这里理理自己主观浅显的理解 这里会谈谈字符编码的是另一种问题和转义没有关系 以下面代码做分析 System.out.println("a". ...
- centos7安装zabbix3.2详解
服务器端安装 1.安装仓库 rpm -ivh http://repo.zabbix.com/zabbix/3.2/rhel/7/x86_64/zabbix-release-3.2-1.el7.noar ...
- day-14 回归中的相关系数和决定系数概念及Python实现
衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...
- 名人问题 算法解析与Python 实现 O(n) 复杂度 (以Leetcode 277. Find the Celebrity为例)
1. 题目描述 Problem Description Leetcode 277. Find the Celebrity Suppose you are at a party with n peopl ...
- es6从零学习(一)let 和 const 命令
es6从零学习(一):let 和 const 命令 一:let 变量 1.块级作用域{}:let只在自己的块级作用域内有效. for(let i =0;i<3;i++) { console.lo ...
- opencart
1. Deleting english language, what happens? Disable English tab , category and products 1) Fir ...
- 理解windows模型
同步 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回.按照这个定义,其实绝大多数函数都是同步调用(例如sin, isdigit等).但是一般而言,我们在说同步.异步的时候,特指 ...
- iOS开发开辟线程总结--NSThread
1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue ...