UVA.357 Let Me Count The Ways (DP 完全背包)

题意分析

与UVA.UVA.674 Coin Change是一模一样的题。需要注意的是,此题的数据量较大,dp数组需要使用long long 类型;另外输出方案为1个和多个的时候,语句是不同的。

代码总览

/*
Title:UVA.357
Author:pengwill
Date:2017-2-16
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define nmax 30005
#define ll long long
using namespace std;
ll dp[nmax];
int m[5] = {1,5,10,25,50};
int main()
{
dp[0] = 1;
for(int i = 0; i<5 ;++i){
for(int j= 0;j+m[i]<nmax;++j){
dp[j+m[i]] += dp[j];
}
}
int n;
while(scanf("%d",&n)!= EOF){
if(dp[n] == 1) printf("There is only %lld way to produce %d cents change.\n",dp[n],n);
else printf("There are %lld ways to produce %d cents change.\n",dp[n],n);
}
return 0;
}

UVA.357 Let Me Count The Ways (DP 完全背包)的更多相关文章

  1. UVA 357 Let Me Count The Ways(全然背包)

    UVA 357 Let Me Count The Ways(全然背包) http://uva.onlinejudge.org/index.php?option=com_onlinejudge& ...

  2. uva 357 Let Me Count The Ways(01背包)

    题目连接:357 - Let Me Count The Ways 题目大意:有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 解题思路:和uva674是一 ...

  3. UVa 357 - Let Me Count The Ways

    题目大意:也是硬币兑换问题,与147.674用同样的方法即可解决. #include <cstdio> #include <cstring> #define MAXN 3000 ...

  4. UVA.10130 SuperSale (DP 01背包)

    UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个. ...

  5. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  6. hdu1059 dp(多重背包二进制优化)

    hdu1059 题意,现在有价值为1.2.3.4.5.6的石头若干块,块数已知,问能否将这些石头分成两堆,且两堆价值相等. 很显然,愚蠢的我一开始并想不到什么多重背包二进制优化```因为我连听都没有听 ...

  7. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  8. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

随机推荐

  1. python基础之全局局部变量及函数参数

    1.局部变量和全局变量 1.1局部变量 局部变量是在函数内部定义的变量,只能在定义函数的内部使用 函数执行结束后,函数内部的局部变量会被系统收回 不同函数可以定义相同名字的局部变量,但是各用个的互不影 ...

  2. Struts2(十.在修改页显示照片列表并增加删除照片功能)

    一.显示照片列表功能 struts2中一般的处理方式:先在action中,准备数据,转到jsp中显示 1.UserAction /** * 点击修改用户按钮跳转到修改用户界面 * 为用户准备照片,以便 ...

  3. Python数据分析基础——Numpy tutorial

    参考link  https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 基础 Numpy主要用于处理多维数组,数组中元素通常是数字,索引值为 ...

  4. 小程序开发中,纯css实现内容收起折叠功能

    不多说,直接上代码: wxml页面: <!--收起折叠 begin--> <view style='width:100%;background:#fff;border-top:1px ...

  5. 机器学习介绍(introduction)-读书笔记-

    一,什么是机器学习 第一个机器学习的定义来自于 Arthur Samuel.他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域.Samuel 的定义可以回溯到 50 年代,他编写了一个 ...

  6. JDK源码分析:Byte.java

    Byte是基本数据类型byte的包装类. 1)声明部分: public final class Byte extends Number implements Comparable<Byte> ...

  7. vista x64 vs2010 win32添加资源 未能完成操作解决办法

    非常痛苦的感觉,不能用vc6,msdn library也不好用,去2k3系统试了下,没有任何问题,无奈想重装系统了,但是太浪费时间,装了虚拟机也是vistax64的,安装之后正常... 卸载重新安装依 ...

  8. 【递归入门】组合的输出:dfs

    题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你不用递归的方 ...

  9. 4. hadoop启动脚本分析

    4. hadoop启动脚本分析 1. hadoop的端口 ``` 50070 //namenode http port 50075 //datanode http port 50090 //2name ...

  10. c#和.net区别

    .net 包含两大部分:.net framework类库和公共语言运行库(CLR) .net framework类库,就是微软工程师写好的各种功能类,例如math类. 公共语言运行库:1.与操作系统进 ...