woc万能的OEIS大法!这题居然是有递推式的QAQ

  http://oeis.org/A002464

  这题的状态想不出来T^T...

  f[i][j][0/1]表示前i个编号,有j对相邻的编号位置上相邻,i和i-1是否相邻

  先考虑f[i][j][1]怎么转移。

  i和i-1相邻,如果i-1和i-2相邻的话,可以选择把i插入这两个中间,这样相邻的对数不会增加,所以可以从f[i-1][j][1]转移。也可以不插入这两个数之间,而是放在i旁边,这样相邻对数会+1,所以可以从f[i-1][j-1][1]转移。如果i-1和i-2不相邻,可以放在i-1的左右两边,f[i][j][1]+=2*f[i-1][j-1][0]转移。

  再考虑f[i][j][0]怎么转移。

  i不和i-1相邻,可以去插入两个相邻数的中间,这样相邻对数-1,f[i][j][0]+=f[i-1][j+1][1]*j+f[i-1][j+1][0]*(j+1)。也可以不插入两个相邻数的中间,f[i][j][0]+=f[i-1][j][1]*(i-j-1)+f[i-1][j][0]*(i-j-2)。

  f[i][j][1]=f[i-1][j][1]+f[i-1][j][1]+f[i-1][j-1][0]*2

  f[i][j][0]=f[i-1][j+1][1]*j+f[i-1][j+1][0]*(j+1)+f[i-1][j][1]*(i-j-1)+f[i-1][j][0]*(i-j-2)

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,mod=;
int n,f[][maxn][];
int MOD(int x){return x>=mod?x-mod:x;}
int main()
{
scanf("%d",&n);f[][][]=;
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
{
f[i&][j][]=MOD(f[(i&)^][j][]+(j>?f[(i&)^][j-][]:));
f[i&][j][]=MOD(f[i&][j][]+(j>?MOD(f[(i&)^][j-][]<<):));
f[i&][j][]=MOD(1ll*f[(i&)^][j+][]*j%mod+1ll*f[(i&)^][j+][]*(j+)%mod);
f[i&][j][]=MOD(f[i&][j][]+MOD(1ll*f[(i&)^][j][]*(i-j-)%mod+1ll*f[(i&)^][j][]*(i-j-)%mod));
}
printf("%d\n",f[n&][][]);
return ;
}

公式递推:

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,mod=;
int n,f[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int MOD(int x){return x>=mod?x-mod:x;}
int main()
{
read(n);
f[]=;f[]=;f[]=;f[]=;
if(n<=)return printf("%d\n",f[n]),;
for(int i=;i<=n;i++)
{
f[i]=MOD(1ll*(i+)*f[i-]%mod-1ll*(i-)*f[i-]%mod+mod);
f[i]=MOD(f[i]-1ll*(i-)*f[i-]%mod+mod);
f[i]=MOD(f[i]+1ll*(i-)*f[i-]%mod);
}
printf("%d\n",f[n]);
return ;
}

bzoj4321: queue2(DP)的更多相关文章

  1. BZOJ4321 queue2(动态规划)

    考虑套路地将1~n依次加入排列.设f[i][j]为已将1~i加入排列,有j对不合法的方案数.加入i+1时可能减少一对不合法的,可能不变,可能增加一对,对于i+1与i的关系再增设0/1/2状态表示i与左 ...

  2. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  3. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  4. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  5. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  6. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  7. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  8. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. Linux命令应用大词典-第12章 程序编译

    12.1 gcc:GNU项目的C和C++编译器 12.2 gdberver:为GNU调试的远程服务器 12.3 cmake:跨平台的Makefile生成工具 12.4 indent:更改通过插入或删除 ...

  2. 使用jenkins构建一个自由风格的项目

    一.创建一个freestyle风格的构建项目 二.输入任务名称和选择任务类型 三.配置项目 3.1:选择代码托管 3.2:到gitlab上去配置deploy key 3.3:到jenkins服务器去生 ...

  3. tpo-08 C1 submit a document for graduation

    第 1 段 1.Listen to a conversation between a student and a registrar. 请听一段学生和老师的对话. 第 2 段 1.Hi, I'd li ...

  4. Ubuntu—查看进程并关闭进程

    环境:Ubuntu终端 命令:ps -aux 功能:查看进程信息 命令:kill 进程号(PID) 功能:杀死进程

  5. C++ 学习笔记之——STL 库 vector

    vector 是一种顺序容器,可以看作是可以改变大小的数组. 就像数组一样,vector 占用连续的内存地址来存储元素,因此可以像数组一样用偏移量来随机访问,但是它的大小可以动态改变,容器会自动处理内 ...

  6. Python+Opencv实现把图片转为视频

    1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...

  7. POJ 2631 Roads in the North(求树的直径,两次遍历 or 树DP)

    题目链接:http://poj.org/problem?id=2631 Description Building and maintaining roads among communities in ...

  8. 自测之Lesson4:gdb

    题目:列出gdb过程中常用的命令. 常用命令: 命令 作用 使用示例1 使用示例2 list 列出代码 list 行号 list 函数名 break 设置断点 break 行号 b 行号 run 运行 ...

  9. 找bug——加分作业

    bug1:while循环中的*des++ =*src++; 不能这么写吧... bug2:maxSize没有定义 暂时看到这么多

  10. P4编程环境搭建遇到的问题与解决方法

    在经历了无数的折腾之后,算是折腾,最后采用的是陈翔学长的脚本加上可爱的shell调整装好的. 链接:p4Install 也许是ubuntu18.04的问题,也有可能是我自己把这个系统折腾的有点杂乱的原 ...