bzoj3157: 国王奇遇记
emmm。。。。。。
直接看题解好了:
BZOJ-3157. 国王奇遇记 – Miskcoo's Space
O(m)不懂扔掉
总之,给我们另一个处理复杂求和的方法:
找到函数之间的递推公式!
这里用错位相减,然后想办法转化
由于根据二项式定理,展开之后会出现k^i的乘方,所以展开,有助于变成f(j)递推下去
O(m^2)
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
const int mod=1e9+;
ll C[N][N];
int n,m;
ll f[N];
ll qm(ll x,ll y){
ll ret=;
while(y){
if(y&) ret=ret*x%mod;
x=x*x%mod;
y>>=;
}
return ret;
}
int main(){
rd(n);rd(m); if(m==){
ll ans=((ll)n*(n+))%mod*qm(,mod-)%mod;
printf("%lld",ans);
return ;
}
C[][]=;
for(reg i=;i<=m;++i){
C[i][]=;
for(reg j=;j<=m;++j){
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
}
f[]=m*(qm(m,n)-+mod)%mod*qm(m-,mod-)%mod;
for(reg i=;i<=m;++i){
for(reg j=;j<=i-;++j){
if((i-j)&){
f[i]=(f[i]-C[i][j]*f[j]%mod+mod)%mod;
}else{
f[i]=(f[i]+C[i][j]*f[j]%mod)%mod;
}
}
f[i]=(f[i]+qm(n,i)*qm(m,n+)%mod)%mod;
f[i]=(f[i]*qm(m-,mod-))%mod;
}
printf("%lld",f[m]);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/12/29 16:48:22
*/
bzoj3157: 国王奇遇记的更多相关文章
- bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成
bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...
- BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版
令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...
- 扰动法--*BZOJ3157: 国王奇遇记
求$\sum_{i=1}^ni^mm^i$.$n \leq 1e9,m \leq 200$. 其实我也不知道这东西为啥叫“扰动法”,大概是在黑暗的边缘试探?就是那种,人家再多一点就被您看破了,然后您就 ...
- BZOJ3157 国王奇遇记——神奇的推式子
先膜一发Miskcoo,大佬的博客上多项式相关的非常全 原题戳我 题目大意 求 \[\sum\limits_{i=1}^{n}i^mm^i\] 题解 设一个函数\(f(i)=\sum\limits_{ ...
- 【BZOJ3157/3516】国王奇遇记(数论)
[BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...
- 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记
数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...
- BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)
由二项式定理,(m+1)k=ΣC(k,i)*mi.由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m.复杂度O(m3logn),因为大常数喜闻乐见的T掉了. #include< ...
- 【BZOJ4126】【BZOJ3516】【BZOJ3157】国王奇遇记 线性插值
题目描述 三倍经验题. 给你\(n,m\),求 \[ \sum_{i=1}^ni^mm^i \] \(n\leq {10}^9,1\leq m\leq 500000\) 题解 当\(m=1\)时\(a ...
- bzoj3157 3516 国王奇遇记
Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...
随机推荐
- hdu1517A Multiplication Game(巴什博弈变形)
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- Android intel X86 图像渲染
最近几天有个项目需要在intel 芯片的系统上集成我们的视频通话软件.之前只是在ARM平台上使用,对于intel 没测试过,直接运行apk后,本端渲染的图像出错,渲染出的图像很像I420被作为RGB5 ...
- 原生js实现轮播图原理
轮播图的原理1.图片移动实现原理:利用浮动将所有所有照片依次排成一行,给这一长串图片添加一个父级的遮罩,每次只显示一张图,其余的都隐藏起来.对图片添加绝对定位,通过控制left属性,实现照片的移动. ...
- [问题] docker: Failed to start Docker Application Container Engine.
docker无法启动: # systemctl restart docker Job for docker.service failed because the control process exi ...
- Python3 标准库:sys
import sys print(sys.argv[0]) print(sys.argv[1]) print(len(sys.argv)) print(str(sys.argv)) print(sys ...
- Java简单工厂模式
Java简单工厂模式 在阎宏博士的<JAVA与模式>一书中开头是这样描述简单工厂模式的:简单工厂模式是类的创建模式,又叫做静态工厂方法(Static Factory Method)模式.简 ...
- POJ 1655 Balancing Act(求树的重心)
Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...
- 模拟Excel同一列相同值的单元格合并
背景 项目中有一个查询工作量,可以将查询的结果导出到Excel表中.在Excel工具中,有一个合并居中功能,可以将选中的单元格合并成一个大的单元格.现在需要在程序中直接实现查询结果的汇总, 问题分析 ...
- iOS- Exception异常处理
1.Exception 前言 在iOS里对异常的处理及捕获,并没有其它语言里那么常见,相信很多iOS程序员都知道,更多的时候是对内存的的检测与分析,检测相关内存方面的问题. 而在app闪退并不是因为内 ...
- TCP源码—连接建立
一.SYN报文处理: 公共部分:tcp_v4_rcv->tcp_v4_do_rcv->tcp_v4_cookie_check(无处理动作)->tcp_rcv_state_proces ...