————————————————————————————————————

写在开头:此文参照莫烦python教程(墙裂推荐!!!)

————————————————————————————————————

分类实验之识别手写数字

  • 这个实验的内容是:基于TensorFlow,实现手写数字的识别。
  • 这里用到的数据集是大家熟知的mnist数据集。
  • mnist有五万多张手写数字的图片,每个图片用28x28的像素矩阵表示。所以我们的输入层每个案列的特征个数就有28x28=784个;因为数字有0,1,2…9共十个,所以我们的输出层是个1x10的向量。输出层是十个小于1的非负数,表示该预测是0,1,2…9的概率,我们选取最大概率所对应的数字作为我们的最终预测。
  • 真实的数字表示为该数字所对应的位置为1,其余位置为0的1x10的向量。

下面就开始实验啦!

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #导入数据
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)#如果还没下载mnist就下载 #定义添加层
def add_layer(inputs,in_size,out_size,activation_function=None):
#定义添加层内容,返回这层的outputs
Weights = tf.Variable(tf.random_normal([in_size,out_size]))#Weigehts是一个in_size行、out_size列的矩阵,开始时用随机数填满
biases = tf.Variable(tf.zeros([1,out_size])+0.1) #biases是一个1行out_size列的矩阵,用0.1填满
Wx_plus_b = tf.matmul(inputs,Weights)+biases #预测
if activation_function is None: #如果没有激励函数,那么outputs就是预测值
outputs = Wx_plus_b
else: #如果有激励函数,那么outputs就是激励函数作用于预测值之后的值
outputs = activation_function(Wx_plus_b)
return outputs #定义计算正确率的函数
def t_accuracy(t_xs,t_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:t_xs})
correct_pre = tf.equal(tf.argmax(y_pre,1),tf.argmax(t_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_pre,tf.float32))
result = sess.run(accuracy,feed_dict={xs:t_xs,ys:t_ys})
return result #定义神经网络的输入值和输出值
xs = tf.placeholder(tf.float32,[None,784]) #None是不规定大小,这里指的是案例个数,而输入特征个数为28x28 = 784
ys = tf.placeholder(tf.float32,[None,10]) #Nnoe也是案例个数,不做规定;10是因为有10个数字,所以输出是10 #增加输出层
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)#这里的激励函数是softmax,此函数多用于多类分类 #计算误差
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) #此误差计算方式和softmax配套用,效果好 #训练
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)#学习因子为0.5 #开始训练
sess = tf.Session()
sess.run(tf.initialize_all_variables()) for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100) #提取数据集的100个数据,因为原来数据太大了
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 == 0:
print (t_accuracy(mnist.test.images,mnist.test.labels)) #每隔50个,打印一下正确率。注意:这里是要用test的数据来测试
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
0.1849
0.6537
0.7393
0.7836
0.8053
0.8203
0.8275
0.837
0.8465
0.8504
0.8567
0.8571
0.8643
0.8637
0.8664
0.8687
0.8719
0.8742
0.8763
0.8773

上面4行就是下载的mnist数据集的四个文件。然后看打印出来的正确率可知,这个网络的预测能力是越来越好的。

下面试一下啊,抽取500个数据来训练,看看效果如何:

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(500) #提取数据集的500个数据,因为原来数据太大了
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 == 0:
print (t_accuracy(mnist.test.images,mnist.test.labels)) #每隔50个,打印一下正确率。注意:这里是要用test的数据来测试
0.9001
0.9022
0.9023
0.9026
0.903
0.903
0.9037
0.9036
0.9034
0.9027
0.9041
0.903
0.9039
0.9034
0.9037
0.9046
0.9055
0.9045
0.9053
0.905

由上面打印出来的正确率可知,抽取500个数据来训练的话,正确率会达到90%


*点击[这儿:TensorFlow]发现更多关于TensorFlow的文章*


3 TensorFlow入门之识别手写数字的更多相关文章

  1. 6 TensorFlow实现cnn识别手写数字

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  2. 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

    TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...

  3. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  4. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  5. 使用神经网络来识别手写数字【译】(三)- 用Python代码实现

    实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...

  6. python手写神经网络实现识别手写数字

    写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手 ...

  7. 用BP人工神经网络识别手写数字

    http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb5 ...

  8. python机器学习使用PCA降维识别手写数字

    PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n ...

  9. KNN 算法-实战篇-如何识别手写数字

    公号:码农充电站pro 主页:https://codeshellme.github.io 上篇文章介绍了KNN 算法的原理,今天来介绍如何使用KNN 算法识别手写数字? 1,手写数字数据集 手写数字数 ...

随机推荐

  1. Fly (From Wikipedia)

    True flies are insects of the order Diptera, the name being derived from the Greek δι- di- "two ...

  2. linux下出现ping:unknown host www.baidu.com问题时的解决办法——ubuntu下局域网络的配置

    如果ping域名的时候出现ping:unknown host  xxx.xxx 但是ping IP地址的时候可以通的话 可知是dns服务器没有配置好, 查看一下配置文件/etc/resolv.conf ...

  3. java 获取服务器时间同步本地计算机时间

    http://hi.baidu.com/captives/item/25c8b80170a9b0ccf45ba6f8 ————————————————————————————————————————— ...

  4. python 学习笔记 if语句

    一.if语句的格式 语句块必须有相同的缩进. 语句块必须比if,elif,else多一层缩进 # 如果条件成立则执行语句块1, # 否则 如果条件2成立则执行语句块2 # 其他情况执行语句块3 # e ...

  5. ISP图像调试工程师

    汉邦高科 任职要求: 1. 电子工程.图像与信号处理.计算机等相关专业,本科及以上学历: 2. 在数字图像处理.视频压缩等方面具有扎实的理论背景知识: 3. 熟悉Sony.Panasonic.Apti ...

  6. 卡友pos机使用流程

    Q: pos机正常使用步骤 A: 1. 按开机键开机2. 输入“01”进行签到3. 系统提示输入密码,密码为“0000”4. 系统提示“请刷卡”,可正常刷卡消费首次使用请务必登陆商户后台核对结算收款账 ...

  7. Android无线测试之—UiAutomator UiScrollable API介绍一

    UiScrollable类介绍 一.UiScrollable类说明: 1.UiScrollable是UiCollection的子类,因此它可以使用UiCollection和Uiobject类的所有公共 ...

  8. 关于vs2013中包含目录,以及库目录配置相对路径的问题

    记住一句话即可! 相对路径: 是相对于你的工程的*.vcxproj的路径!!!

  9. [MongoDB]学习笔记--基本操作

    读取 db.collection.find() db.users.find( { age: {$gt: }}, {name: , address: } ).limit().sort({age:1}) ...

  10. MVC 多种 数据验证 post

    技术:c# .net  采用mvc框架,实现model的数据验证. 刚开始觉得数据验证很方便,可以判断非空.数据正确性,但是后来发现很多需要数据库的判定还是需要post请求做,但是就想mvc的数据验证 ...