bzoj 3598 方伯伯的商场之旅
Written with StackEdit.
Description
方伯伯有一天去参加一个商场举办的游戏。商场派了一些工作人员排成一行。每个人面前有几堆石子。说来也巧,位置在 \(i\) 的人面前的第\(j\) 堆的石子的数量,刚好是 \(i\) 写成 \(K\) 进制后的第 \(j\) 位。
现在方伯伯要玩一个游戏,商场会给方伯伯两个整数\(L,R\)。方伯伯要把位置在 \([L, R]\)中的每个人的石子都合并成一堆石子。每次操作,他可以选择一个人面前的两堆石子,将其中的一堆中的某些石子移动到另一堆,代价是移动的石子数量 * 移动的距离。商场承诺,方伯伯只要完成任务,就给他一些椰子,代价越小,给他的椰子越多。所以方伯伯很着急,想请你告诉他最少的代价是多少。
例如:10 进制下的位置在 12312 的人,合并石子的最少代价为:
\(1 * 2 + 2 * 1 + 3 * 0 + 1 * 1 + 2 * 2 = 9\)
即把所有的石子都合并在第三堆.
Input
输入仅有 1 行,包含 3 个用空格分隔的整数 \(L,R,K\),表示商场给方伯伯的 2 个整数,以及进制数.
Output
输出仅有 1 行,包含 1 个整数,表示最少的代价.
Sample Input
3 8 3
Sample Output
5
Hint
\(1 < = L < = R < = 10^{15}, 2 < = K < = 20\)
Solution
- 考虑数位dp计算出\([1,R]\)的答案,再减去\([1,L-1]\)的答案.
- 一开始可以无脑将集结点设置在第1位,用一次数位dp计算出.(dfs1)
- 然后考虑调整集结点.将集结点从\(i\)调整至\(i+1\)对答案造成的影响再用\(O(k)\)次数位dp计算出.(dfs2)
- 在dfs2中注意若贡献小于0,应返回0,即不执行集结点的调整.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
ll k;
const int MAXN=100;
int t[MAXN],n;
ll f[MAXN][3010];
ll dfs1(int pos,int st,int lim)//数位dp,填到了第pos位,当前总和为st.
{
if(pos==0)
return st;
if(lim==0 && f[pos][st]!=-1)
return f[pos][st];
int mx=lim?t[pos]:k-1;
ll ans=0;
for(int i=0;i<=mx;++i)
ans+=dfs1(pos-1,st+i*(pos-1),lim && i==mx);
if(lim==0)
f[pos][st]=ans;
return ans;
}
ll dfs2(int pos,int st,int m,int lim)//将集结点调节为m的情况下计算最优答案
{
if(st<0)
return 0;
if(pos==0)
return st;
if(lim==0 && f[pos][st]!=-1)
return f[pos][st];
int mx=lim?t[pos]:k-1;
ll ans=0;
for(int i=0;i<=mx;++i)
{
if(pos>=m)
ans+=dfs2(pos-1,st+i,m,lim && i==mx);
else
ans+=dfs2(pos-1,st-i,m,lim && i==mx);
}
if(lim==0)
f[pos][st]=ans;
return ans;
}
ll solve(ll x)
{
for(n=0;x;x/=k)
t[++n]=x%k;
memset(f,-1,sizeof f);
ll res=dfs1(n,0,1);
for(int i=2;i<=n;++i)//将集结点从i-1调整至i,更新答案.
{
memset(f,-1,sizeof f);
res-=dfs2(n,0,i,1);
}
return res;
}
int main()
{
ll l=read(),r=read();
k=read();
ll ans=solve(r)-solve(l-1);
printf("%lld\n",ans);
return 0;
}
代码参考了dalao的blog.
bzoj 3598 方伯伯的商场之旅的更多相关文章
- [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)
3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 449 Solved: 254[Submit][Sta ...
- 「SCOI2014」方伯伯的商场之旅 解题报告
「SCOI2014」方伯伯的商场之旅 我一开始的想法会被两个相同的集合位置去重给搞死,不过应该还是可以写的,讨论起来老麻烦. 可以先钦定在\(1\)号点集合,然后往后调整一部分. 具体一点,通过前缀和 ...
- 「SCOI2014」方伯伯的商场之旅
「SCOI2014」方伯伯的商场之旅 题目描述 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石 ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 【bzoj3598】: [Scoi2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- [SCOI2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- 【数位DP】SCOI2014 方伯伯的商场之旅
题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...
- bzoj 3598 [ Scoi 2014 ] 方伯伯的商场之旅 ——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 数位DP...东看西看:http://www.cnblogs.com/Artanis/ ...
- bzoj 3598 [Scoi2014]方伯伯的商场之旅——数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 TJ:https://www.cnblogs.com/Zinn/p/9351218.h ...
随机推荐
- dbml 注意事项
1,修改dbml中的字段,需要修改2个地方
- kali安装后配置
0x00.安装Vmware Tools 由于是在VMware Workstation里面安装的,所以需要首先安装VMware tools工具方便我们Ctrl+C和Ctrl+V,步骤如下: 在VMWar ...
- 《网络对抗》 逆向及Bof进阶实践
<网络对抗> 逆向及Bof进阶实践 实践目标 注入一个自己制作的shellcode并运行这段shellcode: 实践步骤 准备工作 root@5224:~# apt-get instal ...
- 20162326 齐力锋 2016-2017-2 《程序设计与数据结构》 MySort.java 实验博客
实验代码学习编程中的问题及解决方法 代码运行成功截图 首次代码运行出现的问题截图 问题1:无法从静态上下文中引用非静态方法 问题1解决方法及思考: split方法是非静态方法,需要借助对象来调用.我查 ...
- [翻译]PostCSS简介
许多开发人员花时间在使用CSS的预处理器上如less,sass和stylus.这些工具已经成为Web开发的重要组成部分.写一个网站的样式,不使用嵌套,变量或混入等功能很少见.它们每个都是非常实用的,让 ...
- Deep Auto-encoder
autoencoder可以用于数据压缩.降维,预训练神经网络,生成数据等等. autoencoder的架构 autoencoder的架构是这样的: 需要分别训练一个Encoder和一个Decoder. ...
- 使用John the ripper工具来尝试破解Linux密码
这篇文章主要介绍了使用John the ripper工具来尝试破解Linux密码的方法,这款工具可能主要被用来破解系统用户的密码以获得文件操作权限,需要的朋友可以参考下 John有别于Hdra之类的工 ...
- [算法] 将单链表的每K个节点之间逆序
题目 给定一个单链表的头结点,实现一个调整单链表的函数,使得每K个节点之间逆序,如果最后不够K个节点一组,则不调整最后几个节点. 解答 使用栈结构 import java.util.Stack; pu ...
- JSONObject使用方法
转载:http://blog.csdn.net/dongzhouzhou/article/details/8664569 1.JSONObject介绍 JSONObject-lib包是一个beans, ...
- Python学习(二)——深度学习入门介绍
课程二:深度学习入门 讲师:David (数据分析工程师) 这门课主要介绍了很多神经网络的基本原理,非常非常基础的了解. 零.思维导图预览: 一.深度神经网络 1.神经元 ...