ZOJ 2760 How Many Shortest Path(最短路径+最大流)
Description
Given a weighted directed graph, we define the shortest path as the path who has the smallest length among all the path connecting the source vertex to the target vertex. And if two path is said to be non-overlapping, it means that the two path has no common edge. So, given a weighted directed graph, a source vertex and a target vertex, we are interested in how many non-overlapping shortest path could we find out at most.
Input
Input consists of multiple test cases. The first line of each test case, there is an integer number N (1<=N<=100), which is the number of the vertices. Then follows an N * N matrix, represents the directed graph. Each element of the matrix is either non-negative integer, denotes the length of the edge, or -1, which means there is no edge. At the last, the test case ends with two integer numbers S and T (0<=S, T<=N-1), that is, the starting and ending points. Process to the end of the file.
Output
For each test case, output one line, the number of the the non-overlapping shortest path that we can find at most, or "inf" (without quote), if the starting point meets with the ending.
题目大意:一有向有权图,给源点、汇点,问从源点到汇点有多少条不重叠(没有重边)的最短路径
思路:一次floyd,把dis[s][i] + edge[i][j] + dis[j][t] == dis[s][t]的边(最短路径上的边)都加入网络流的图,容量为1。最大流为答案(容量为1,那么这些从源点出发的流都不会有重叠边)。
PS:据说矩阵的对角线上的点不都是0,我把AC代码上的mat[i][i] = st[i][i] = 0注释掉了,果然WA了,这是闹哪样……当然要是你不使用类似于[i][i]这种边就不会有这种烦恼……
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; const int MAXN = 110;
const int MAXE = MAXN * MAXN * 2;
const int INF = 0x7f7f7f7f; struct Dinic {
int n, m, st, ed, ecnt;
int head[MAXN];
int cur[MAXN], d[MAXN];
int to[MAXE], next[MAXE], flow[MAXE], cap[MAXE]; void init(int ss, int tt, int nn) {
st = ss; ed = tt; n = nn;
ecnt = 2;
memset(head, 0, sizeof(head));
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = 0; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = 0; flow[ecnt] = 0; next[ecnt] = head[v]; head[v] = ecnt++;
} bool bfs() {
memset(d, 0, sizeof(d));
queue<int> que; que.push(st);
d[st] = 1;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(!d[v] && cap[p] > flow[p]) {
d[v] = d[u] + 1;
que.push(v);
if(v == ed) return true;
}
}
}
return d[ed];
} int dfs(int u, int a) {
if(u == ed || a == 0) return a;
int outflow = 0, f;
for(int &p = cur[u]; p; p = next[p]) {
int v = to[p];
if(d[u] + 1 == d[v] && (f = dfs(v, min(a, cap[p] - flow[p]))) > 0) {
flow[p] += f;
flow[p ^ 1] -= f;
outflow += f;
a -= f;
if(a == 0) break;
}
}
return outflow;
} int Maxflow() {
int ans = 0;
while(bfs()) {
for(int i = 0; i <= n; ++i) cur[i] = head[i];
ans += dfs(st, INF);
}
return ans;
}
} G; int mat[MAXN][MAXN];
int st[MAXN][MAXN]; #define REP(i, t) for(int i = 1; i <= t; ++i) void floyd(int n) {
REP(k, n) REP(i, n) REP(j, n) {
if(st[i][k] == -1 || st[k][j] == -1) continue;
if(st[i][j] == -1 || st[i][j] > st[i][k] + st[k][j]) st[i][j] = st[i][k] + st[k][j];
}
//REP(i, n) REP(j, n) printf("%d\n", st[i][j]);
} int main() {
int n, s, t;
while(scanf("%d", &n) != EOF) {
REP(i, n) REP(j, n) {
scanf("%d", &mat[i][j]);
st[i][j] = mat[i][j];
}
REP(i, n) st[i][i] = mat[i][i] = 0;
scanf("%d%d", &s, &t);
++s, ++t;
if(s == t) {
printf("inf\n");
continue;
}
floyd(n);
G.init(s, t, n);
REP(i, n) REP(j, n)
if(i != j && mat[i][j] != -1 && st[s][i] != -1 && st[j][t] != -1
&& st[s][t] == st[s][i] + mat[i][j] + st[j][t]) G.add_edge(i, j, 1);
printf("%d\n", G.Maxflow());
}
}
ZOJ 2760 How Many Shortest Path(最短路径+最大流)的更多相关文章
- zoj 2760 How Many Shortest Path【最大流】
不重叠最短路计数. 先弗洛伊德求一遍两两距离(其实spfa或者迪杰斯特拉会更快但是没必要懒得写),然后设dis为st最短距离,把满足a[s][u]+b[u][v]+a[v][t]==dis的边(u,v ...
- zoj 2760 How Many Shortest Path 最大流
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...
- ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]
人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...
- ZOJ 2760 How Many Shortest Path (不相交的最短路径个数)
[题意]给定一个N(N<=100)个节点的有向图,求不相交的最短路径个数(两条路径没有公共边). [思路]先用Floyd求出最短路,把最短路上的边加到网络流中,这样就保证了从s->t的一个 ...
- ZOJ 2760 How Many Shortest Path
题目大意:给定一个带权有向图G=(V, E)和源点s.汇点t,问s-t边不相交最短路最多有几条.(1 <= N <= 100) 题解:从源点汇点各跑一次Dij,然后对于每一条边(u,v)如 ...
- ZOJ 2760 How Many Shortest Path(Dijistra + ISAP 最大流)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给定一个带权有向图 G=(V, E)和源点 s.汇点 t ...
- SPOJ 15. The Shortest Path 最短路径题解
本题就是给出一组cities.然后以下会询问,两个cities之间的最短路径. 属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了. 由于本题反复查询次数也不多,故此假设保存全部最 ...
- [ZOJ2760]How Many Shortest Path(floyd+最大流)
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给你一个一个n*n(n<=100)的有向图,问你从s到 ...
- [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes
An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...
随机推荐
- Linux下安装 nginx
安装依赖 yum install gcc yum install pcre-devel yum install zlib zlib-devel yum install openssl openssl- ...
- Linux中JDK的安装步骤
1.下载jdk安装包rpm格式安装 http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa8 ...
- shell入门基础&常见命令及用法
shell shell是一个命令解释器,实际是一个程序,/bin/bash,linux中所有的命令都由它来解释,有自己的语法 shell脚本 以.sh结尾 shell语法+linux命令 注释: 单行 ...
- 使用PHPExcel 读取 表格数据, 发现中文全变成 FALSE??
出现这样的情况, 你可以看看你的表格是不是 CSV 格式的. 如果是, 那就赶紧另保存为 xls.xlsx 等格式的表格 . 因为 PHPExcel 对 Csv 的表格不感冒....
- checked和unchecked转换
static unsafe void Main(string[] args) { unchecked //checked 运行时候引发异常 { int n = int.MaxValue; n++; C ...
- 从python2.x到python3.x进阶突破
1.p2是重复代码,语言不同,不支持中文;p3则相反,其中代码不重复,语言用的相同的,并且是支持中文的. 2.p2中input中输入数字输出数字,输入字符串必须自己手动加引号才行;p3中input输出 ...
- git小技巧之分支、关联远程仓库、回滚、解决.gitignore不生效等
1.分支管理 新建并切换分支:git checkout -b <name>新建本地分支并关联到远程分支git checkout -b myRelease origin/Release合并某 ...
- Vi中进行多行指定内容替换
1.先按Esc进入命令模式,然后在打出‘:’(英文输入模式下) 2.输入格式: 首行数,末行数s/要替换的字符串/替换的字符串/g (不加g只替换每行的一个要替换的字符串,后面的不会替换) e ...
- go基础语法-内置变量类型
1.内建变量一览 bool,string (u)int,(u)int8,(u)int16,(u)int32,(u)int64,uintptr 无长度int的实际长度取决于操作系统位数(32/64) u ...
- 数据库操作-go
原版 import ( "database/sql" _ "github.com/go-sql-driver/mysql" "fmt" ) ...