OpenCV学习4-----K-Nearest Neighbors(KNN)demo
最近用到KNN方法,学习一下OpenCV给出的demo。
demo大意是随机生成两团二维空间中的点,然后在500*500的二维空间平面上,计算每一个点属于哪一个类,然后用红色和绿色显示出来每一个点
如下是一系demo里用到的相关函数。
运行效果:
红色背景应该是表示每一个像素的类别标签和红色的点的标签相同。同理,绿色背景表示绿色的像素与绿色的点是同一个类的。
demo.cpp:
#include "ml.h"
#include "highgui.h" int main( int argc, char** argv )
{
const int K = ;
int i, j, k, accuracy;
float response;
int train_sample_count = ;
CvRNG rng_state = cvRNG(-);
CvMat* trainData = cvCreateMat( train_sample_count, , CV_32FC1 );
CvMat* trainClasses = cvCreateMat( train_sample_count, , CV_32FC1 );
IplImage* img = cvCreateImage( cvSize( , ), , );
float _sample[];
CvMat sample = cvMat( , , CV_32FC1, _sample );
cvZero( img ); CvMat trainData1, trainData2, trainClasses1, trainClasses2; // form the training samples
cvGetRows( trainData, &trainData1, , train_sample_count/ );
cvRandArr( &rng_state, &trainData1, CV_RAND_NORMAL, cvScalar(,), cvScalar(,) ); cvGetRows( trainData, &trainData2, train_sample_count/, train_sample_count );
cvRandArr( &rng_state, &trainData2, CV_RAND_NORMAL, cvScalar(,), cvScalar(,) ); cvGetRows( trainClasses, &trainClasses1, , train_sample_count/ );
cvSet( &trainClasses1, cvScalar() ); cvGetRows( trainClasses, &trainClasses2, train_sample_count/, train_sample_count );
cvSet( &trainClasses2, cvScalar() ); // learn classifier
CvKNearest knn( trainData, trainClasses, , false, K );
CvMat* nearests = cvCreateMat( , K, CV_32FC1); for( i = ; i < img->height; i++ )
{
for( j = ; j < img->width; j++ )
{
sample.data.fl[] = (float)j;
sample.data.fl[] = (float)i; // estimate the response and get the neighbors' labels
response = knn.find_nearest(&sample,K,,,nearests,); // compute the number of neighbors representing the majority
for( k = , accuracy = ; k < K; k++ )
{
if( nearests->data.fl[k] == response)
accuracy++;
}
// highlight the pixel depending on the accuracy (or confidence)
cvSet2D( img, i, j, response == ?
(accuracy > ? CV_RGB(,,) : CV_RGB(,,)) :
(accuracy > ? CV_RGB(,,) : CV_RGB(,,)) );
}
} // display the original training samples
for( i = ; i < train_sample_count/; i++ )
{
CvPoint pt;
pt.x = cvRound(trainData1.data.fl[i*]);
pt.y = cvRound(trainData1.data.fl[i*+]);
cvCircle( img, pt, , CV_RGB(,,), CV_FILLED );
pt.x = cvRound(trainData2.data.fl[i*]);
pt.y = cvRound(trainData2.data.fl[i*+]);
cvCircle( img, pt, , CV_RGB(,,), CV_FILLED );
} cvNamedWindow( "classifier result", );
cvShowImage( "classifier result", img );
cvWaitKey(); cvReleaseMat( &trainClasses );
cvReleaseMat( &trainData );
return ;
}
参考:
https://docs.opencv.org/2.4/modules/ml/doc/k_nearest_neighbors.html
OpenCV学习4-----K-Nearest Neighbors(KNN)demo的更多相关文章
- [机器学习系列] k-近邻算法(K–nearest neighbors)
C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...
- 转载: scikit-learn学习之K最近邻算法(KNN)
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
- <机器学习实战>读书笔记--k邻近算法KNN
k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定 ...
- 学习笔记之k-nearest neighbors algorithm (k-NN)
k-nearest neighbors algorithm - Wikipedia https://en.wikipedia.org/wiki/K-nearest_neighbors_algorith ...
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- OpenCV 学习笔记 06 图像检索以及基于图像描述符的搜索
OpenCV 可以检测图像的主要特征,然后提取这些特征,使其成为图像描述符,这些图像特征可作为图像搜索的数据库:此外可以利用关键点将图像拼接 stitch 起来,组成一个更大的图像.如将各照片组成一个 ...
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
- 机器学习--K近邻 (KNN)算法的原理及优缺点
一.KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法. 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对 ...
- (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU
首页 视界智尚 算法技术 每日技术 来打我呀 注册 OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...
- OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...
随机推荐
- 03.安装jdk8作为系统环境
博客为日常工作学习积累总结: 1.安装JDK8 创建安装目录:mkdir /application/java8 解压-安装包自行下载:tar -zxf jdk-8u202-linux-x64.tar. ...
- 浅谈vue,小程序,react基础绑定值
最近一直在用react开发项目,碰见的问题千千万,很多,但是都殊途同源,唯一区别大的就是没有像vue的双向绑定,也没有小程序的单向方便,比如: vue v-modal="msg" ...
- flask第三方插件WTForms
在django中有ModelForm, 虽然flask原生没有提供, 但是强大的第三方也提供了这样的功能 虽然不如django的强大, 但是基本的功能还是可以有的, 下面就来使用一哈. WTForms ...
- php bug 调试助手 debug_print_backtrace()
debug_print_backtrace() 是一个很低调的函数,很少有人注意过它. 不过当我对着一个对象调用另一个对象再调用其它的对象和文件中的一个函数出错时,它也许正在一边笑呢 如果我们想知道某 ...
- HBase学习(一):认识HBase
一.大数据发展背景 现今是数据飞速膨胀的大数据时代,大数据强调3V特征,即Volume(量级).Varity(种类)和Velocity(速度). ·Volume(量级):TB到ZB. ·Varity( ...
- OpenWrt超时检测
参考http://www.right.com.cn/forum/thread-261702-1-1.html vim /home/ihid/chaos_calmer/feeds/luci/module ...
- 手搓一个C语言简单计算器。
#include <stdio.h> void xing(int shu); void biaoti(int kong,char * title); void zhuyemian(char ...
- java static代码块执行时机
之前一直认为static块是在class load的时候执行,今天在验证Spring初始化Context loader的时候,发现bean的static块并没有执行. Java代码: 1 Class ...
- 使用JAX-WS(JWS)发布WebService(二)
将项目改为maven工程,并发布到Tomcat: WebService常用到的注解以及作用: 发布过程中遇到的问题总结: 一.将项目改为maven工程,并发布到Tomcat: 继续上一篇,将代码完善成 ...
- MongoDB入门---文档查询操作之条件查询&and查询&or查询
经过前几天的学习之路,今天终于到了重头戏了.那就是文档查询操作.话不多说哈,直接看下语法: db.collection.find(query, projection) query :可选,使用查询操作 ...