Linux Kernel文件系统写I/O流程代码分析(二)bdi_writeback

上一篇# Linux Kernel文件系统写I/O流程代码分析(一),我们看到Buffered IO,写操作写入到page cache后就直接返回了,本文主要分析脏页是如何刷盘的。

概述

由于内核page cache的作用,写操作实际被延迟写入。当page cache里的数据被用户写入但是没有刷新到磁盘时,则该page为脏页(块设备page cache机制因为以前机械磁盘以扇区为单位读写,引入了buffer_head,每个4K的page进一步划分成8个buffer,通过buffer_head管理,因此可能只设置了部分buffer head为脏)。

脏页在以下情况下将被回写(write back)到磁盘上:

  • 脏页在内存里的时间超过了阈值。
  • 系统的内存紧张,低于某个阈值时,必须将所有脏页回写。
  • 用户强制要求刷盘,如调用sync()、fsync()、close()等系统调用。

以前的Linux通过pbflush机制管理脏页的回写,但因为其管理了所有的磁盘的page/buffer_head,存在严重的性能瓶颈,因此从Linux 2.6.32开始,脏页回写的工作由bdi_writeback机制负责。bdi_writeback机制为每个磁盘都创建一个线程,专门负责这个磁盘的page cache或者

buffer cache的数据刷新工作,以提高I/O性能。

BDI系统

BDI是backing device info的缩写,它用于描述后端存储(如磁盘)设备相关的信息。相对于内存来说,后端存储的I/O比较慢,因此写盘操作需要通过page cache进行缓存延迟写入。

最初的BDI子系统里,模块启动的时候创建bdi-default进程,然后为每个注册的设备创建flush-x:y(x,y为主次设备号)的进程,用于脏数据的回写。在Linux 3.10.0版本之后,BDI子系统使用workqueue机制代替原来的线程创建,需要回写时,将flush任务提交给workqueue,最终由通用的[kworker]进程负责处理。BDI子系统初始化的代码如下:

static int __init default_bdi_init(void)
{
int err; bdi_wq = alloc_workqueue("writeback", WQ_MEM_RECLAIM | WQ_FREEZABLE |
WQ_UNBOUND | WQ_SYSFS, 0);
if (!bdi_wq)
return -ENOMEM; err = bdi_init(&default_backing_dev_info);
if (!err)
bdi_register(&default_backing_dev_info, NULL, "default");
err = bdi_init(&noop_backing_dev_info); return err;
}
subsys_initcall(default_bdi_init);

设备注册

当执行mount流程时,底层文件系统定义自己的struct backing_dev_info结构并将其注册到BDI子系统,如下是FUSE代码示例:

static int fuse_bdi_init(struct fuse_conn *fc, struct super_block *sb)
{
int err; fc->bdi.name = "fuse";
fc->bdi.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
/* fuse does it's own writeback accounting */
fc->bdi.capabilities = BDI_CAP_NO_ACCT_WB | BDI_CAP_STRICTLIMIT; err = bdi_init(&fc->bdi);
if (err)
return err; fc->bdi_initialized = 1; if (sb->s_bdev) {
err = bdi_register(&fc->bdi, NULL, "%u:%u-fuseblk",
MAJOR(fc->dev), MINOR(fc->dev));
} else {
err = bdi_register_dev(&fc->bdi, fc->dev);
} if (err)
return err; /*
* /sys/class/bdi/<bdi>/max_ratio
*/
bdi_set_max_ratio(&fc->bdi, 1); return 0;
}

该函数先通过bdi_init()初始化struct backing_dev_info,然后通过bid_register()将其注册到BDI子系统。

其中bdi_init()会调用bdi_wb_init()初始化struct bdi_writeback

static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi)
{
memset(wb, 0, sizeof(*wb)); wb->bdi = bdi;
wb->last_old_flush = jiffies;
INIT_LIST_HEAD(&wb->b_dirty);
INIT_LIST_HEAD(&wb->b_io);
INIT_LIST_HEAD(&wb->b_more_io);
spin_lock_init(&wb->list_lock);
INIT_DELAYED_WORK(&wb->dwork, bdi_writeback_workfn);
}

其中初始化了一个默认处理函数为bdi_writeback_workfn的work,用于回写处理。

数据回写

在上一篇的基础上,将图补充了bdi回写的部分,如下所示:

bdi_queue_work

BDI子系统使用workqueue机制进行数据回写,其回写接口为bdi_queue_work()将具体某个bdi的回写请求(wb_writeback_work)挂到bdi_wq上。代码如下:

static void bdi_queue_work(struct backing_dev_info *bdi,
struct wb_writeback_work *work)
{
trace_writeback_queue(bdi, work); spin_lock_bh(&bdi->wb_lock);
if (!test_bit(BDI_registered, &bdi->state)) {
if (work->done)
complete(work->done);
goto out_unlock;
}
list_add_tail(&work->list, &bdi->work_list);
mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
out_unlock:
spin_unlock_bh(&bdi->wb_lock);
}

调用该函数的地方包括:

  • sync_inode_sb(): 将该super block上所有的脏inode回写。
  • writeback_inodes_sb_nr():回写super block上指定个数脏inode。
  • __bdi_start_writeback():定时调用或者需要释放pages或者需要更多内存时调用。

bdi_writeback_workfn

bdi_queue_work()提交了work给bdi_wq上,由对应的bdi处理函数进行处理,默认的函数为bdi_writeback_workfn,其代码如下:

void bdi_writeback_workfn(struct work_struct *work)
{
struct bdi_writeback *wb = container_of(to_delayed_work(work),
struct bdi_writeback, dwork);
struct backing_dev_info *bdi = wb->bdi;
long pages_written; set_worker_desc("flush-%s", dev_name(bdi->dev));
current->flags |= PF_SWAPWRITE; if (likely(!current_is_workqueue_rescuer() ||
!test_bit(BDI_registered, &bdi->state))) {
/*
* The normal path. Keep writing back @bdi until its
* work_list is empty. Note that this path is also taken
* if @bdi is shutting down even when we're running off the
* rescuer as work_list needs to be drained.
*/
do {
pages_written = wb_do_writeback(wb);
trace_writeback_pages_written(pages_written);
} while (!list_empty(&bdi->work_list));
} else {
/*
* bdi_wq can't get enough workers and we're running off
* the emergency worker. Don't hog it. Hopefully, 1024 is
* enough for efficient IO.
*/
pages_written = writeback_inodes_wb(&bdi->wb, 1024,
WB_REASON_FORKER_THREAD);
trace_writeback_pages_written(pages_written);
} if (!list_empty(&bdi->work_list))
mod_delayed_work(bdi_wq, &wb->dwork, 0);
else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
bdi_wakeup_thread_delayed(bdi); current->flags &= ~PF_SWAPWRITE;
}

首先判断当前workqueue能否获得足够的worker进行处理,如果能则将bdi上所有work全部提交,否则只提交一个work并限制写入1024个pages。

正常情况下通过调用wb_do_writeback函数处理回写。

wb_do_writeback

该函数代码如下,遍历bdi上所有work,通过调用wb_writeback()进行数据写入。

static long wb_do_writeback(struct bdi_writeback *wb)
{
struct backing_dev_info *bdi = wb->bdi;
struct wb_writeback_work *work;
long wrote = 0; set_bit(BDI_writeback_running, &wb->bdi->state);
while ((work = get_next_work_item(bdi)) != NULL) { trace_writeback_exec(bdi, work); wrote += wb_writeback(wb, work); /*
* Notify the caller of completion if this is a synchronous
* work item, otherwise just free it.
*/
if (work->done)
complete(work->done);
else
kfree(work);
} /*
* Check for periodic writeback, kupdated() style
*/
wrote += wb_check_old_data_flush(wb);
wrote += wb_check_background_flush(wb);
clear_bit(BDI_writeback_running, &wb->bdi->state); return wrote;
}

wb_writeback()函数最终调用__writeback_single_inode()将某个inode上脏页刷回。

__writeback_single_inode

__writeback_single_inode()的代码如下,最终通过调用do_writepages()函数写盘:

static int
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
{
struct address_space *mapping = inode->i_mapping;
long nr_to_write = wbc->nr_to_write;
unsigned dirty;
int ret; WARN_ON(!(inode->i_state & I_SYNC)); trace_writeback_single_inode_start(inode, wbc, nr_to_write); ret = do_writepages(mapping, wbc); /*
* Make sure to wait on the data before writing out the metadata.
* This is important for filesystems that modify metadata on data
* I/O completion. We don't do it for sync(2) writeback because it has a
* separate, external IO completion path and ->sync_fs for guaranteeing
* inode metadata is written back correctly.
*/
if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
int err = filemap_fdatawait(mapping);
if (ret == 0)
ret = err;
} /*
* Some filesystems may redirty the inode during the writeback
* due to delalloc, clear dirty metadata flags right before
* write_inode()
*/
spin_lock(&inode->i_lock);
/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
inode->i_state &= ~I_DIRTY_PAGES;
dirty = inode->i_state & I_DIRTY;
inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
spin_unlock(&inode->i_lock);
/* Don't write the inode if only I_DIRTY_PAGES was set */
if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
int err = write_inode(inode, wbc);
if (ret == 0)
ret = err;
}
trace_writeback_single_inode(inode, wbc, nr_to_write);
return ret;
}

do_writepages

函数do_writepages()在上一篇已经介绍过了,它负责调用底层文件系统的a_ops->writepages将pages写入后端存储。

Linux Kernel文件系统写I/O流程代码分析(二)bdi_writeback的更多相关文章

  1. Linux Kernel文件系统写I/O流程代码分析(一)

    Linux Kernel文件系统写I/O流程代码分析(一) 在Linux VFS机制简析(二)这篇博客上介绍了struct address_space_operations里底层文件系统需要实现的操作 ...

  2. arm linux kernel 从入口到start_kernel 的代码分析

    参考资料: <ARM体系结构与编程> <嵌入式Linux应用开发完全手册> Linux_Memory_Address_Mapping http://www.chinaunix. ...

  3. Linux内核启动代码分析二之开发板相关驱动程序加载分析

    Linux内核启动代码分析二之开发板相关驱动程序加载分析 1 从linux开始启动的函数start_kernel开始分析,该函数位于linux-2.6.22/init/main.c  start_ke ...

  4. Ecshop的购物流程代码分析详细说明

    Ecshop的购物流程代码分析详细说明 (2012-07-30 10:41:12) 转载▼ 标签: 购物车 结算中心 商品价格 ecshop ecshop购物流程 杂谈 分类: ECSHOP研究院 同 ...

  5. Openfire注册流程代码分析

    Openfire注册流程代码分析 一.客户端/服务端注册用户流程 经过主机连接消息确认后,客户端共发送俩条XML完成注册过程.服务器返回两条XML. 注:IQ消息节点用于处理用户的注册.好友.分组.获 ...

  6. Android4.0图库Gallery2代码分析(二) 数据管理和数据加载

    Android4.0图库Gallery2代码分析(二) 数据管理和数据加载 2012-09-07 11:19 8152人阅读 评论(12) 收藏 举报 代码分析android相册优化工作 Androi ...

  7. 《linux 内核全然剖析》 fork.c 代码分析笔记

    fork.c 代码分析笔记 verifiy_area long last_pid=0; //全局变量,用来记录眼下最大的pid数值 void verify_area(void * addr,int s ...

  8. 《linux 内核全然剖析》 sys.c 代码分析

    sys.c 代码分析 setregid /* * This is done BSD-style, with no consideration of the saved gid, except * th ...

  9. SQL注入原理及代码分析(二)

    前言 上一篇文章中,对union注入.报错注入.布尔盲注等进行了分析,接下来这篇文章,会对堆叠注入.宽字节注入.cookie注入等进行分析.第一篇文章地址:SQL注入原理及代码分析(一) 如果想要了解 ...

随机推荐

  1. Slq怎么样获取首条记录和最后一条记录

    sql如何查询表的第一条记录和最后一条记录 方法一:使用top select TOP 1 * from apple;TOP 1 表示表apple中的第一条数据 select TOP 1 * from ...

  2. a标签点击时跳出确认框

    在做一些删除等的操作时,在跳转链接前,需要弹出一个确认框确认,避免误点. 方法一: <a  href="http://www.baidu.com" onClick=" ...

  3. solr7.4 centos7安装

    环境:centos7.JDK1.8.solr 自带Jetty启动 一.安装JDK1.8环境 1.下载JDK jdk-8u172-linux-x64.rpm 下载地址:http://www.oracle ...

  4. 为啥我的Andrid百度SDK不能正常运行?

    首先,百度SDK运行时候需要加载API Key,这个API Key是通过百度账号在百度里面申请到的,但是很可能大家没有注意到百度这个API Key申请的过程,其中很重要的一个步骤没有做好,而导致不能正 ...

  5. Mysql内置功能《一》流程控制

    delimiter // CREATE PROCEDURE proc_if () BEGIN declare i int default 0; if i = 1 THEN SELECT 1; ELSE ...

  6. read_csv 函数

    转载自 https://www.cnblogs.com/datablog/p/6127000.html pandas.read_csv参数整理 读取CSV(逗号分割)文件到DataFrame也支持文件 ...

  7. 2019 JUST Programming Contest J. Grid Beauty

    J. Grid Beauty time limit per test 3.0 s memory limit per test 256 MB input standard input output st ...

  8. 恢复 MSSQL bak 文件扩展名数据(上)

    恢复 MSSQL bak 文件扩展名数据 一.概念: Microsoft SQL Server是由美国微软公司所推出的关系数据库解决方案,最新的版本是SQL Server 2016,已经在2016年6 ...

  9. 977 AlvinZH过生日(背包DP大作战S)

    977 AlvinZH过生日 思路 难题.逆推DP. 要明确dp的状态只与是否有选择权有关,而与选择权在谁手里无关.因为不论选择权在谁手里,那个人都会尽可能的获得最大的蛋糕重量. dp[i]表示分配到 ...

  10. JS 与 OC 交互

    WebView与JS的几种交互 IOS中 使用JavaScriptCore 实现OC与JS的交互 JavaScriptCore 使用