druid
实时分析型数据库
Druid | Interactive Analytics at Scale http://druid.io/
Druid is primarily used to store, query, and analyze large event streams. Examples of event streams include user generated data such as clickstreams, application generated data such as performance metrics, and machine generated data such as network flows and server metrics. Druid is optimized for sub-second queries to slice-and-dice, drill down, search, filter, and aggregate this data. Druid is commonly used to power interactive applications where performance, concurrency, and uptime are important.
Druid was initially created to power a scalable, visual, multi-tenant application where users could not only rapidly slice and dice data to create ad-hoc reports, but also interactively explore data to quickly determine the root cause of patterns and anomalies. Druid is designed from the ground up for sub-second queries, which are critical in interactive applications as usability studies have shown that humans get distracted and lose their train of thought if responses take longer than a second.
Design
Druid’s core design combines ideas from OLAP/analytic databases, timeseries databases, and search systems to create a unified system for operational analytics. Core design ideas include:
Column-oriented storage
Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys.
Native search indexes
Druid creates inverted indexes for string values for fast search and filter.
Streaming and batch ingest
Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more.
Flexible schemas
Druid gracefully handles evolving schemas and nested data.
Time-optimized partitioning
Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases.
SQL support
In addition to its native JSON based language, Druid speaks SQL over either HTTP or JDBC.
Horizontally scalable
Druid has been used in production to ingest millions of events/sec, retain years of data, and provide sub-second queries.
Easy to operate
Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
To learn more, read our Technology page.
Use cases
Druid is proven in production at the world’s leading companies, with the largest installations having more than a thousand servers, ingesting over 10 million events per second, and supporting thousands of concurrent queries per second. Druid is used to:
Analyze performance
Create interactive dashboards with full drill down capabilities. Analyze performance of digital products, track mobile app usage, or monitor site reliability.
Diagnose problems
Find the root cause of issues. Troubleshoot netflow bottlenecks, analyze security threats, or diagnose software crashes.
Find commonalities
Find common attributes among events. Identify shared components in defective products, or determine patterns in top performing products.
Increase efficiency
Improve product engagement. Optimize ad-spend in digital marketing campaigns or increase user engagement in online products.
To learn more, read our Use Cases page.
druid的更多相关文章
- Spring + SpringMVC + Druid + MyBatis 给你一个灵活的后端解决方案
生命不息,折腾不止. 折腾能遇到很多坑,填坑我理解为成长. 两个月前自己倒腾了一套用开源框架构建的 JavaWeb 后端解决方案. Spring + SpringMVC + Druid + JPA(H ...
- Spring + SpringMVC + Druid + JPA(Hibernate impl) 给你一个稳妥的后端解决方案
最近手头的工作不太繁重,自己试着倒腾了一套用开源框架组建的 JavaWeb 后端解决方案. 感觉还不错的样子,但实践和项目实战还是有很大的落差,这里只做抛砖引玉之用. 项目 git 地址:https: ...
- 学记:spring boot使用官网推荐以外的其他数据源druid
虽然spring boot提供了4种数据源的配置,但是如果要使用其他的数据源怎么办?例如,有人就是喜欢druid可以监控的强大功能,有些人项目的需要使用c3p0,那么,我们就没办法了吗?我们就要编程式 ...
- druid连接池获取不到连接的一种情况
数据源一开始配置: jdbc.initialSize=1jdbc.minIdle=1jdbc.maxActive=5 程序运行一段时间后,执行查询抛如下异常: exception=org.mybati ...
- druid配置数据库连接使用密文密码
spring使用druid配置dataSource片段代码 dataSource配置 <!-- 基于Druid数据库链接池的数据源配置 --> <bean id="data ...
- [转]阿里巴巴数据库连接池 druid配置详解
一.背景 java程序很大一部分要操作数据库,为了提高性能操作数据库的时候,又不得不使用数据库连接池.数据库连接池有很多选择,c3p.dhcp.proxool等,druid作为一名后起之秀,凭借其出色 ...
- 技术杂记-改造具有监控功能的数据库连接池阿里Druid,支持simple-jndi,kettle
kettle内置的jndi管理是simple-jndi,功能确实比较简单,我需要监控kettle性能,druid确实是很不错的选择,但没有提供对应的支持,我改进了druid源码,实现了simple-j ...
- sql 连接数不释放 ,Druid异常:wait millis 40000, active 600, maxActive 600
Hibernate + Spring + Druid 数据库mysql 由于配置如下 <bean id="dataSource" class="com.alibab ...
- druid sql黑名单 报异常 sql injection violation, part alway true condition not allow
最近使用druid,发现阿里这个连接池 真的很好用,可以监控到连接池活跃连接数 开辟到多少个连接数 关闭了多少个,对于我在项目中查看错误 问题,很有帮助, 但是最近发现里面 有条sql语句 被拦截了, ...
- 从零开始学 Java - 数据库连接池的选择 Druid
我先说说数据库连接 数据库大家都不陌生,从名字就能看出来它是「存放数据的仓库」,那我们怎么去「仓库」取东西呢?当然需要钥匙啦!这就是我们的数据库用户名.密码了,然后我们就可以打开门去任意的存取东西了. ...
随机推荐
- 利用dd命令制作u盘iso镜像
现在安装系统都是用u盘安装,那么制作u盘的iso镜像就是必须的了.现在此类工具倒是不少,但是,好用的不多,有的还收费.唉,还是用dd吧,老配方,老味道. 首先:要df -h一下,看看u盘的盘符,类似 ...
- Unity3D碰撞器事件测试(Rigidbody/Kinematic/Trigger/Collider)
1.Kinematic和刚体之间的碰撞事件 Unity官方有一个详细的碰撞关系表:http://docs.unity3d.com/Manual/CollidersOverview.html 但其实可以 ...
- Atitit.异常的设计原理与 策略处理 java 最佳实践 p93
Atitit.异常的设计原理与 策略处理 java 最佳实践 p93 1 异常方面的使用准则,答案是:: 2 1.1 普通项目优先使用异常取代返回值,如果开发类库方面的项目,最好异常机制与返回值都提供 ...
- Atitit.ati orm的设计and架构总结 适用于java c# php版
Atitit.ati orm的设计and架构总结 适用于java c# php版 1. Orm的目标1 1.1. 动态obj1 1.2. Hb的api(meger,save,update,del)1 ...
- C#实现的自定义IIS认证模块 转载
IIS7以后application pool都支持两种模式:经典模式和集成模式. 所谓经典模式就是与IIS6的application pool运行模式相同,对于asp.net的页面请求处理由单独的as ...
- 品茗论道说广播(Broadcast内部机制讲解)(上)
1 概述 我们在编写Android程序时,常常会用到广播(Broadcast)机制.从易用性的角度来说,使用广播是非常简单的.不过,这个不是本文关心的重点,我们希望探索得再深入一点儿.我想,许多人也不 ...
- 如何查看VisualStudio的编译, 链接命令
VisualStudio默认是不显示编译命令的,如何查看呢. 对于链接器: 项目属性 -> 配置属性 -> 链接器 -> 常规 -> 显示进度 -> 设为 "/ ...
- form在submit之前使用request.setCharacterEncoding是没用的
点击了submit按钮,就创建了另一个request了 比如你有a.jsp,上面有个form,form的action指向某个Servlet或者Action,那么你在a.jsp页面上写的request. ...
- MapReduce编程实例4
MapReduce编程实例: MapReduce编程实例(一),详细介绍在集成环境中运行第一个MapReduce程序 WordCount及代码分析 MapReduce编程实例(二),计算学生平均成绩 ...
- Hive学习笔记——基本配置及测试
1.什么是Hive Hive 是建立在 Hadoop上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储.查询和分析存储在Hadoop中的大规模数据的机 ...