druid
实时分析型数据库
Druid | Interactive Analytics at Scale http://druid.io/
Druid is primarily used to store, query, and analyze large event streams. Examples of event streams include user generated data such as clickstreams, application generated data such as performance metrics, and machine generated data such as network flows and server metrics. Druid is optimized for sub-second queries to slice-and-dice, drill down, search, filter, and aggregate this data. Druid is commonly used to power interactive applications where performance, concurrency, and uptime are important.
Druid was initially created to power a scalable, visual, multi-tenant application where users could not only rapidly slice and dice data to create ad-hoc reports, but also interactively explore data to quickly determine the root cause of patterns and anomalies. Druid is designed from the ground up for sub-second queries, which are critical in interactive applications as usability studies have shown that humans get distracted and lose their train of thought if responses take longer than a second.
Design
Druid’s core design combines ideas from OLAP/analytic databases, timeseries databases, and search systems to create a unified system for operational analytics. Core design ideas include:
Column-oriented storage
Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys.
Native search indexes
Druid creates inverted indexes for string values for fast search and filter.
Streaming and batch ingest
Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more.
Flexible schemas
Druid gracefully handles evolving schemas and nested data.
Time-optimized partitioning
Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases.
SQL support
In addition to its native JSON based language, Druid speaks SQL over either HTTP or JDBC.
Horizontally scalable
Druid has been used in production to ingest millions of events/sec, retain years of data, and provide sub-second queries.
Easy to operate
Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
To learn more, read our Technology page.
Use cases
Druid is proven in production at the world’s leading companies, with the largest installations having more than a thousand servers, ingesting over 10 million events per second, and supporting thousands of concurrent queries per second. Druid is used to:
Analyze performance
Create interactive dashboards with full drill down capabilities. Analyze performance of digital products, track mobile app usage, or monitor site reliability.
Diagnose problems
Find the root cause of issues. Troubleshoot netflow bottlenecks, analyze security threats, or diagnose software crashes.
Find commonalities
Find common attributes among events. Identify shared components in defective products, or determine patterns in top performing products.
Increase efficiency
Improve product engagement. Optimize ad-spend in digital marketing campaigns or increase user engagement in online products.
To learn more, read our Use Cases page.
druid的更多相关文章
- Spring + SpringMVC + Druid + MyBatis 给你一个灵活的后端解决方案
生命不息,折腾不止. 折腾能遇到很多坑,填坑我理解为成长. 两个月前自己倒腾了一套用开源框架构建的 JavaWeb 后端解决方案. Spring + SpringMVC + Druid + JPA(H ...
- Spring + SpringMVC + Druid + JPA(Hibernate impl) 给你一个稳妥的后端解决方案
最近手头的工作不太繁重,自己试着倒腾了一套用开源框架组建的 JavaWeb 后端解决方案. 感觉还不错的样子,但实践和项目实战还是有很大的落差,这里只做抛砖引玉之用. 项目 git 地址:https: ...
- 学记:spring boot使用官网推荐以外的其他数据源druid
虽然spring boot提供了4种数据源的配置,但是如果要使用其他的数据源怎么办?例如,有人就是喜欢druid可以监控的强大功能,有些人项目的需要使用c3p0,那么,我们就没办法了吗?我们就要编程式 ...
- druid连接池获取不到连接的一种情况
数据源一开始配置: jdbc.initialSize=1jdbc.minIdle=1jdbc.maxActive=5 程序运行一段时间后,执行查询抛如下异常: exception=org.mybati ...
- druid配置数据库连接使用密文密码
spring使用druid配置dataSource片段代码 dataSource配置 <!-- 基于Druid数据库链接池的数据源配置 --> <bean id="data ...
- [转]阿里巴巴数据库连接池 druid配置详解
一.背景 java程序很大一部分要操作数据库,为了提高性能操作数据库的时候,又不得不使用数据库连接池.数据库连接池有很多选择,c3p.dhcp.proxool等,druid作为一名后起之秀,凭借其出色 ...
- 技术杂记-改造具有监控功能的数据库连接池阿里Druid,支持simple-jndi,kettle
kettle内置的jndi管理是simple-jndi,功能确实比较简单,我需要监控kettle性能,druid确实是很不错的选择,但没有提供对应的支持,我改进了druid源码,实现了simple-j ...
- sql 连接数不释放 ,Druid异常:wait millis 40000, active 600, maxActive 600
Hibernate + Spring + Druid 数据库mysql 由于配置如下 <bean id="dataSource" class="com.alibab ...
- druid sql黑名单 报异常 sql injection violation, part alway true condition not allow
最近使用druid,发现阿里这个连接池 真的很好用,可以监控到连接池活跃连接数 开辟到多少个连接数 关闭了多少个,对于我在项目中查看错误 问题,很有帮助, 但是最近发现里面 有条sql语句 被拦截了, ...
- 从零开始学 Java - 数据库连接池的选择 Druid
我先说说数据库连接 数据库大家都不陌生,从名字就能看出来它是「存放数据的仓库」,那我们怎么去「仓库」取东西呢?当然需要钥匙啦!这就是我们的数据库用户名.密码了,然后我们就可以打开门去任意的存取东西了. ...
随机推荐
- visual studio 2017发布dotnet core到docker
docker的好处不用多说,有不了解的可移步<docker入门>,作为一个.net方面的老鸟也想早点搭上docker末班车,减少布署中的各种坑.以下我是在Visual Studio 201 ...
- CentOS6.x修改主机名,关闭防火墙
一.centos默认主机名为localhost,不方便管理,此次,我修改为noi. 1.修改网络配置文件:/etc/sysconfig/network 首先,备份一下源文件,注意date命令和加号之间 ...
- Atitit.prototype-base class-based 基于“类” vs 基于“原型”
Atitit.prototype-base class-based 基于“类” vs 基于“原型” 1. 基于“类” vs 基于“原型”1 2. 对象的产生有两种基本方式.一种是以原型(proto ...
- dmesg命令应用
昨晚上线服务的时候,看log偶然发现服务在启动半小时左右就会被supervise重新拉起,也没有core.通过重新启动的服务发现内存飙涨,且持续增加,怀疑是内存打满,进程被kill了. 其实怀疑是正确 ...
- python之版本管理
linux 环境下怎样对不同的python环境进行 方便的切换呢?update-alternatives工具能够非常方便的帮我们完成这个任务.而windows环境下可通过anaconda来完成. 1. ...
- CentOS上扩充lv-root空间步骤详解
查看服务器发现vg_host01-lv_root下的空间占用的比较多,需要扩容. 有以下两种方案: )利用空余的磁盘,扩展lv_root的大小(推荐) )将lv_home的空间挪出一部分给lv_roo ...
- IE的layout布局
我们那知道浏览器有bug,而且Windows上的lE的bug 似乎比太多数浏览器都多.IE/Win的表现与其他浏览器不同的原因之一是,显示引擎使用一个称为布局(layout)的内部概念.因为布均是一个 ...
- Qt类反射机制
前言 如何通过类名动态的创建对象(类反射),对于Java开发者来说一点也不陌生,当然Qt也提供了一个元对象系统(The Meta-Object System),通过这个系统我们可以动态的在运行时获 ...
- CRF++使用说明
摘选自 :CRF++: Yet Another CRF toolkit Usage: 1.输入输出文件 He PRP B-NP reckons VBZ B-VP the DT B-NP current ...
- 什么是 Web?
Web这个词刚开始显得有些泛泛,似乎“冲浪”.“网上存在”以及“主页”等等都和它拉上了一些关系. 甚至还有一种“Internet 综合症”的说法,对许多人狂热的上网行为提出了质疑.我们在这里有必要作一 ...