Riding in a Lift
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Examples
input
  1. 5 2 4 1
output
  1. 2
input
  1. 5 2 4 2
output
  1. 2
input
  1. 5 3 4 1
output
  1. 0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.

【题意】有一n层楼的楼房,可坐电梯上下。初始位置在a层,b层楼门无法打开,所以无法到达。如果你当前在x层,你能走到y层当且仅当|x - y| < |x - b|.

每一次有效的移动可到达一个楼层,然后把楼层号写下,连续的移动就可写下一个序列。

问经过k次连续的移动后,产生的序列种数。

【分析】DP。dp[i][j]表示第j次移动到达i层楼的序列数,dp[i][j]=∑(dp[能够到达i层楼的楼层][j-1])%mod。所以这里需要求一个前缀和,然后去掉dp[i][j-1]。

  1. #include <bits/stdc++.h>
  2. #define pb push_back
  3. #define mp make_pair
  4. #define vi vector<int>
  5. #define inf 0x3f3f3f3f
  6. #define met(a,b) memset(a,b,sizeof a)
  7. using namespace std;
  8. typedef long long LL;
  9. const int N = 5e3+;
  10. const int mod = 1e9+;
  11. int n,a,b,k;
  12. LL dp[N][N],sum[N];
  13. int main(){
  14. scanf("%d%d%d%d",&n,&a,&b,&k);
  15. dp[a][]=;
  16. for(int i=;i<=n;i++){
  17. sum[i]=(sum[i-]+dp[i][])%mod;
  18. }
  19. for(int j=;j<=k;j++){
  20. for(int i=;i<=n;i++){
  21. if(i>b){
  22. int low=(i+b)/;
  23. int up=n;
  24. dp[i][j]=((sum[up]-sum[low]+mod)%mod-dp[i][j-]+mod)%mod;
  25. }
  26. else if(i<b){
  27. int low=;
  28. int up=(i+b)&==?(i+b)/:(i+b)/-;;
  29. dp[i][j]=((sum[up]-sum[low]+mod)%mod-dp[i][j-]+mod)%mod;
  30. }
  31. //printf("i:%d j:%d dp:%lld\n",i,j,dp[i][j]);
  32. }
  33. sum[]=;
  34. for(int i=;i<=n;i++){
  35. sum[i]=(sum[i-]+dp[i][j])%mod;
  36. }
  37. }
  38. LL ans=;
  39. for(int i=;i<=n;i++)ans=(ans+dp[i][k])%mod;
  40. printf("%lld\n",ans);
  41. return ;
  42. }

Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)的更多相关文章

  1. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  2. Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp

    C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...

  3. Codeforces Round #274 Div.1 C Riding in a Lift --DP

    题意:给定n个楼层,初始在a层,b层不可停留,每次选一个楼层x,当|x-now| < |x-b| 且 x != now 时可达(now表示当前位置),此时记录下x到序列中,走k步,最后问有多少种 ...

  4. Codeforces Round #274 (Div. 2) E. Riding in a Lift(DP)

    Imagine that you are in a building that has exactly n floors. You can move between the floors in a l ...

  5. Codeforces Round #274 (Div. 2)

    A http://codeforces.com/contest/479/problem/A 枚举情况 #include<cstdio> #include<algorithm> ...

  6. Codeforces Round #274 (Div. 1) B. Long Jumps 数学

    B. Long Jumps Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/ ...

  7. Codeforces Round #274 (Div. 1) A. Exams 贪心

    A. Exams Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/A Des ...

  8. codeforces水题100道 第八题 Codeforces Round #274 (Div. 2) A. Expression (math)

    题目链接:http://www.codeforces.com/problemset/problem/479/A题意:给你三个数a,b,c,使用+,*,()使得表达式的值最大.C++代码: #inclu ...

  9. Codeforces Round #274 (Div. 2)-C. Exams

    http://codeforces.com/contest/479/problem/C C. Exams time limit per test 1 second memory limit per t ...

随机推荐

  1. LightOJ 1419 – Necklace Polya计数+费马小定理求逆元

    题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...

  2. C11性能之道:标准库优化

    1.emplace_back减少内存拷贝和移动 emplace_back能通过参数构造对象,不需要拷贝或者移动内存,相比pusk_back能更好的避免内存的拷贝和移动,使容器插入元素性能得到进一步提升 ...

  3. 例子Architecting Android…The clean way?----代码分析

    Presention层:   整个应用启动的时候,就执行依赖的初始化.编译项目之后,Dagger依赖框架使用ApplicationComponent生成一个DaggerApplicationCOmpo ...

  4. Coursera在线学习---第七节.支持向量机(SVM)

    一.代价函数   对比逻辑回归与支持向量机代价函数. cost1(z)=-log(1/(1+e-z)) cost0(z)=-log(1-1/(1+e-z)) 二.支持向量机中求解代价函数中的C值相当于 ...

  5. ThinkSnS v4后台任意文件下载漏洞

    漏洞文件: /apps/admin/Lib/Action/UpgradeAction.class.php 主要问题还是出现在了180行直接将远程获取到的图片直接保存. 文中可见并没有做任何的对$dow ...

  6. JS阶段测试

    JS阶段测试 一.选择题 1.表单中的数据要提交到的处理文件由表单的( c )属性指定. A. method     B. name    C. action    D. 以上都不对 2.在CSS样式 ...

  7. 【swupdate文档 一】嵌入式系统的软件管理

    嵌入式系统的软件管理 嵌入式系统变得越来越复杂, 它们的软件也反映了这种复杂性的增加. 为了支持新的特性和修复,很有必要让嵌入式系统上的软件 能够以绝对可靠的方式更新. 在基于linux的系统上,我们 ...

  8. C++学习之路(七):以const,enum,inline替换#define

    这篇博文主要是编程中的一些问题和技巧.如题目所示,这些关键字的作用不再进行描述.直接描述功能和实例代码. 首先,在头文件中对类进行定义,是不会为类分配内存空间的,在这一点上类定义可以和普通变量类型的声 ...

  9. sicily 数据结构 1014. Translation

    Description You have just moved from Waterloo to a big city. The people here speak an incomprehensib ...

  10. opengl基础学习专题 (一 )编程环境搭建

    题外话: 第一次在博客园上同大家分享博文.水的的地方,错别字的地方.环境交流.批评.知道了马上改. 以前在百度空间中写技术分享博文,后来百度啥也没说就把整个空间封了.当时感觉 还是有点寒心.只想黑一下 ...