Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 5957   Accepted: 1833

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given
integer m, find the K-th element which is relatively prime to m when
these elements are sorted in ascending order.

Input

The
input contains multiple test cases. For each test case, it contains two
integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5

题目大意就是给出n和k求出第k个与n互素的数

如果知道欧几里德算法的话就应该知道gcd(b×t+a,b)=gcd(a,b)  (t为任意整数)

则如果a与b互素,则b×t+a与b也一定互素,如果a与b不互素,则b×t+a与b也一定不互素

故与m互素的数对m取模具有周期性,则根据这个方法我们就可以很快的求出第k个与m互素的数

假设小于m的数且与m互素的数有k个,其中第i个是ai,则第m×k+i与m互素的数是k×m+ai

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int pri[];
int gcd ( int a , int b )
{
return b == ? a : gcd ( b , a % b ) ;
}
int main()
{
freopen("in.txt","r",stdin);
int m , k ;
while ( cin >> m >> k )
{
int i , j ;
for ( i = , j = ; i <= m ; i ++ )
if ( gcd ( m , i ) == )
pri [ j ++ ] = i ; if ( k%j != )
cout <<k/j * m +pri[k%j-] << endl;
else//要特别考虑k%j=0的情况,因为数组是从0开始的,第i个对应的是pri[i-1]
cout << (k/j-)*m+pri[j-] << endl ;
}
return ;
}

poj 2773欧几里德的更多相关文章

  1. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

  2. POJ 2773 Happy 2006 数学题

    题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...

  3. POJ 2773 Happy 2006#素数筛选+容斥原理+二分

    http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...

  4. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

  5. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...

  6. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  7. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  8. D - C Looooops POJ - 2115 欧几里德拓展

    题意:就是看看for(; ;)多久停止. 最让我蛋疼的是1L和1LL的区别!让我足足wa了12发! 1L 是long类型的, 1LL为long long类型的! 思路: 这就是欧几里德扩展的标准式子了 ...

  9. POJ 2773 Happy 2006------欧几里得 or 欧拉函数。

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8359   Accepted: 2737 Descri ...

随机推荐

  1. 【BZOJ】2196: [Usaco2011 Mar]Brownie Slicing

    [题意]给定n*m的数字矩阵,要求横着切A-1刀,对每块再分别竖着切B-1刀,是最小子矩阵最大. [算法]二分+贪心 [题解]还记得提高组2015跳石头吗?这道题做法一致,只不过拓展到二维而已. 二分 ...

  2. 【codevs】3196 黄金宝藏

    [算法]区间DP+博弈论 [题解]其实它都不是博弈题…… 很自然的可以设f[i][j]表示i~j先手可取得的最大价值. 容易得到转移式:f[i][j]=max(a[i]+sum[i+1~j]-f[i+ ...

  3. 【BZOJ】1726 [Usaco2006 Nov]Roadblocks第二短路

    [算法]最短路(spfa) 次短路 [题解] 正反跑两次SPFA,然后枚举每一条边,如果起点到一个端点的最短路+另一个端点到终点的最短路+长度 ≠ 最短路,则和答案比较,保存最小值. #include ...

  4. Gradle编译时下载依赖失败解决方法

    如果Gradle在编译的时候没有在本地仓库中发现依赖,就会从远程仓库中下载,默认的远程仓库为mavenCentral(),也就是http://repo1.maven.org/maven2/,但是往往访 ...

  5. 消息队列之 ActiveMQ(山东数漫江湖)

    简介 ActiveMQ 特点 ActiveMQ 是由 Apache 出品的一款开源消息中间件,旨在为应用程序提供高效.可扩展.稳定.安全的企业级消息通信. 它的设计目标是提供标准的.面向消息的.多语言 ...

  6. poj 2387 Til the Cows Come Home(dijkstra算法)

    题目链接:http://poj.org/problem?id=2387 题目大意:起点一定是1,终点给出,然后求出1到所给点的最短路径. 注意的是先输入边,在输入的顶点数,不要弄反哦~~~ #incl ...

  7. 广度优先算法(BFS)与深度优先算法(DFS)

    一.广度优先算法BFS(Breadth First Search) 基本实现思想 (1)顶点v入队列. (2)当队列非空时则继续执行,否则算法结束. (3)出队列取得队头顶点v: (4)查找顶点v的所 ...

  8. Linux内核基础--事件通知链(notifier chain)【转】

    转自:http://blog.csdn.net/wuhzossibility/article/details/8079025 内核通知链 1.1. 概述 Linux内核中各个子系统相互依赖,当其中某个 ...

  9. CNN中千奇百怪的卷积方式大汇总

    1.原始版本 最早的卷积方式还没有任何骚套路,那就也没什么好说的了. 见下图,原始的conv操作可以看做一个2D版本的无隐层神经网络. 附上一个卷积详细流程: [TensorFlow]tf.nn.co ...

  10. tableView选中行的调用顺序/ 取消选中Cell

    UITableViewCell它有两个属性highLighted.selected.很明显一个是高亮状态, 一个是选中状态. UITableViewCell, 对应的2个方法 // 高亮状态调用的方法 ...