1004: [HNOI2008]Cards

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

【分析】

  这一题是直接输入了m个置换的。

  把输入的置换变成互不相交的循环,根据burnside引理我们要求让所有循环节里的元素颜色相同的方案数,但是3种颜色都规定了数量的,所以用三维DP可以求出方案数,最后求均值。

  有一个不懂的地方就是,为什么不用计算那m个置换的乘积的贡献呢??【问号??

  好吧我没看题。。题目上说保证任意多次洗牌都可用这 m种洗牌法中的一种代替

  其他地方还是很好算的。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 110 int a[Maxn],f[][][];
bool vis[Maxn];
int l[Maxn];
int Sr,Sb,Sg,m,p,n; void ffind()
{
memset(f,,sizeof(f));
f[][][]=;
for(int q=;q<=l[];q++)
{
for(int i=Sr;i>=;i--)
for(int j=Sb;j>=;j--)
for(int k=Sg;k>=;k--)
{
if(i>=l[q]) f[i][j][k]=(f[i][j][k]+f[i-l[q]][j][k])%p;
if(j>=l[q]) f[i][j][k]=(f[i][j][k]+f[i][j-l[q]][k])%p;
if(k>=l[q]) f[i][j][k]=(f[i][j][k]+f[i][j][k-l[q]])%p;
}
}
} int qpow(int a,int b)
{
int ans=;
while(b)
{
if(b&) ans=(ans*a)%p;
a=(a*a)%p;
b>>=;
}
return ans;
} int main()
{
scanf("%d%d%d%d%d",&Sr,&Sb,&Sg,&m,&p);
n=Sr+Sb+Sg;
int ans=;
m++;
for(int i=;i<=m;i++)
{
if(i!=m)
{
for(int j=;j<=n;j++) scanf("%d",&a[j]);
}
else for(int j=;j<=n;j++) a[j]=j;
l[]=;
for(int j=;j<=n;j++) vis[j]=;
for(int j=;j<=n;j++) if(vis[j]==)
{
int x=j,cnt=;
while(vis[x]==)
{
vis[x]=;
cnt++;
x=a[x];
}
l[++l[]]=cnt;
}
ffind();
ans=(ans+f[Sr][Sb][Sg])%p;
}
ans=(ans*qpow(m,p-))%p;
printf("%d\n",ans);
return ;
}

2017-01-12 15:51:25

【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)的更多相关文章

  1. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  2. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  3. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  4. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  5. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  7. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  8. BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)

    题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...

  9. 【BZOJ 1004】 [HNOI2008]Cards

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染 ...

  10. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

随机推荐

  1. Centos7下关于memcached的安装和简单使用

    在这里,由于用编译安装memcached服务端过于复杂,因此我选用依赖管理工具 yum 来实现 memcached 的服务端安装: [root@localhost /]# yum install -y ...

  2. bzoj3940&&bzoj3942 Ac自动机||kpm算法

    方法就是维护一个动态栈 记录栈的每一位匹配到串的哪一位的编号 第一道kmp第二道ac自动机 自己理会 #include<cstdio> #include<cstring> #i ...

  3. iOS开发者两分钟学会用GitHub在Mac上托管代码的两种方法

        原文发布者:http://blog.csdn.net/duxinfeng2010 在Mac上使用Xcode进行iOS-Apple苹果iPhone手机开发过程中少不了使用GitHub在Mac上托 ...

  4. Billboard HDU 2795 (线段树)

    题目链接 Problem Description At the entrance to the university, there is a huge rectangular billboard of ...

  5. bzoj 1006 MCS算法

    根据陈丹琪的论文弦图与区间图,求出弦图的完美消除序列之后,反向给每个点染可以染的最小的颜色,这样可以使用最少的颜色染色,染色的方案即为队伍数. 那么我们需要求该图的完美消除序列,使用MCS算法,从后向 ...

  6. 为什么Windows7打开项目的方式是灰的不能修改

    http://jingyan.baidu.com/article/d3b74d64a964691f77e60900.html 进入组策略编辑器,即运行gpedit.msc,进入“用户配置”-“管理模板 ...

  7. dev_cpu_dead

    Kernel: 4.12.6 每个cpu都有自己的softnet_data结构,用来处理数据包接收,但是当softnet_data所在cpu无法工作时,即CPUHP_NET_DEV_DEAD状态,就需 ...

  8. 105.Construct Binary Tree from Preorder and Inorder Traversal---《剑指offer》面试6

    题目链接 题目大意:根据先序遍历和中序遍历构造二叉树. 法一:DFS.根据模拟步骤,直接从先序和中序数组中找值然后加入二叉树中,即先从先序数组中确定根结点,然后再去中序数组中确定左子树和右子树的长度, ...

  9. hadoop安装 伪分布

    伪分布hadoop 安装总结 准备,在配置中hadoop用的9000端口,如果有其它软件用着这个端口,建议更换后再进行下面配置,以避免出现错误.比如php-fpm经常使用9000端口. 一.下载jdk ...

  10. OC 01 类和对象

    一.  定义OC的类和创建OC的对象 接下来就在OC中模拟现实生活中的情况,创建一辆车出来.首先要有一个车子类,然后再利用车子类创建车子对象 要描述OC中的类稍微麻烦一点,分2大步骤:类的声明.类的实 ...