根据题目容易得到N%Mi=Mi-a。

那么可得N%Mi+a=Mi。

两侧同时对Mi取余,可得(N+a)%Mi=0。

将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可。

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
int K;
ll a;
int main(){
ll x;
while(1){
cin>>K>>a;
if(K==0 && a==0){
break;
}
ll lcm=1;
for(int i=1;i<=K;++i){
scanf("%I64d",&x);
lcm=lcm/__gcd(lcm,x)*x;
}
printf("%I64d\n",lcm-a);
}
return 0;
}

【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again的更多相关文章

  1. HDU1788 Chinese remainder theorem again【中国剩余定理】

    题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...

  2. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  3. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  4. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  5. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  6. 数学--数论--中国剩余定理 拓展 HDU 1788

    再次进行中国余数定理 问题描述 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡ a2(mod ...

  7. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

  8. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  9. POJ 1006 Biorhythms (数论-中国剩余定理)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 111285   Accepted: 34638 Des ...

随机推荐

  1. 使用 ftrace 调试 Linux 内核,第 1 部分【转】

    转自:http://www.ibm.com/developerworks/cn/linux/l-cn-ftrace1/index.html ftrace 是 Linux 内核中提供的一种调试工具.使用 ...

  2. mac cocoapod安装过程

    cocoapod: 自动化管理第三方开发包的一个插件, 废话不多说, 一个新手只需做如下几个步骤 1-> 安装ruby环境(可忽略, 不是必要) 1.1 首先我们先看看当前你机器上ruby的版本 ...

  3. vue做购物车

    写一点废话,昨天敲代码找bug,找了好久都没找到,后来一哥们找到他说,找代码的bug就像男女朋友吵架,女问男你错了没,男说错啦,女再问错哪了,男傻眼了不知道错哪.在找代码的过程中一直知道我错啦就是找不 ...

  4. Winform利用委托进行窗体间的传值

    在form1.cs中 1.委托的定义 //定义一个委托 public delegate void AddUsrEventHandler(object sender, AddUsrEventHandle ...

  5. Dubbo之旅--注册中心

    在介绍Dubbo的内部逻辑的时候提到很多次注册中心的概念.实现注册中心的有很多,主要是以下四个注册中心分别是: Multicast注册中心 Zookeeper注册中心 Redis注册中心 Simple ...

  6. 1:django models

    重温django model 1:many-to-many 的额外属性 一般情况下,many-to-many直接就可以满足我们的要求,考虑这样一种情况: 音乐家和乐团是many-to-many的关系, ...

  7. ZOJ-3319

    Islands Time Limit: 1 Second      Memory Limit: 32768 KB There are N islands and some directed paths ...

  8. ConcurrentMap.putIfAbsent(key,value) 用法讨论

    ConcurrentMap.putIfAbsent(key,value) 用法讨论 http://wxl24life.iteye.com/blog/1746794

  9. 说说WordPress的主查询函数-query_posts()

    今天说说WordPress 的主查询函数 -query_posts(),因为我正在制作的主题里面多次用到了这个函数 . query_posts()查询函数决定了哪些文章出现在WordPress 主 循 ...

  10. react生命周期函数使用箭头函数,导致mobx-react问题

    最近新人加入了项目,遇到了一个很奇怪的问题.mobx observable 属性,onChange的时候就是页面不会刷新. 试来试去,就是不知道什么原因,后来其他同事查到是因为componentWil ...