农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N。恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地。而且从每片草地出发都可以抵达其他所有草地。也就是说,这些草地和道路构成了一种叫做树的图。输入包含一个详细的草地的集合,详细说明了每个草地的父节点P_i (0 <= P_i <= N)。根节点的P_i == 0, 表示它没有父节点。因为奶牛建立了1到K一共K (1 <= K <= N/2)个政党。每只奶牛都要加入某一个政党,其中, 第i只奶牛属于第A_i (1 <= A_i <= K)个政党。而且每个政党至少有两只奶牛。 这些政党互相吵闹争。每个政党都想知道自己的“范围”有多大。其中,定义一个政党的范围是这个政党离得最远的两只奶牛(沿着双向道路行走)的距离。 比如说,记为政党1包含奶牛1,3和6,政党2包含奶牛2,4和5。这些草地的连接方式如下图所 示(政党1由-n-表示):  政党1最大的两只奶牛的距离是3(也就是奶牛3和奶牛6的距离)。政党2最大的两只奶牛的距离是2(也就是奶牛2和4,4和5,还有5和2之间的距离)。 帮助奶牛们求出每个政党的范围。

Input

* 第一行: 两个由空格隔开的整数: N 和 K * 第2到第N+1行: 第i+1行包含两个由空格隔开的整数: A_i和P_i

Output

* 第1到第K行: 第i行包含一个单独的整数,表示第i个政党的范围。

Sample Input

6 2
1 3
2 1
1 0
2 1
2 1
1 5

Sample Output

3
2

可以证明一个结论 一棵树的直径必然存在一条过深度最深的点

所以我们可以求出每种颜色最深的点 然后其他点和他求一波lca算答案就可以了

这样的复杂度是nlogn的 

#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=3e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int rt,n,k,c[M],mx[M],id[M];
int first[M],cnt;
struct node{int to,next;}e[M];
int f[M][],fa[M],dep[M];
void ins(int a,int b){e[++cnt]=(node){b,first[a]}; first[a]=cnt;}
void dfs(int x){//printf("[%d]\n",x);
for(int i=;(<<i)<=dep[x];i++) f[x][i]=f[f[x][i-]][i-];
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
dep[now]=dep[x]+;
f[now][]=x;
if(dep[now]>mx[c[now]]) mx[c[now]]=dep[now],id[c[now]]=now;
dfs(now);
}
}
int find(int x,int y){
if(dep[x]<dep[y]) std::swap(x,y);
int d=dep[x]-dep[y];
for(int i=;(<<i)<=d;i++) if((<<i)&d) x=f[x][i];
if(x==y) return x;
for(int i=;i>=;i--)
if((<<i)<=dep[x]&&f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][];
}
int ans[M];
int main(){
int x,y;
n=read(); k=read();
for(int i=;i<=n;i++){
c[i]=read(); fa[i]=read();
if(fa[i]) ins(fa[i],i);
else rt=i;
}
dep[rt]=; dfs(rt);
for(int i=;i<=n;i++){
int lca=find(i,id[c[i]]);
ans[c[i]]=std::max(ans[c[i]],dep[i]+dep[id[c[i]]]-*dep[lca]);
}
for(int i=;i<=k;i++) printf("%d\n",ans[i]);
return ;
}

bzoj 1776: [Usaco2010 Hol]cowpol 奶牛政坛——树的直径的更多相关文章

  1. 【BZOJ1776】[Usaco2010 Hol]cowpol 奶牛政坛 树的直径

    [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛 Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N. ...

  2. BZOJ 1776: [Usaco2010 Hol]cowpol 奶牛政坛 LCA + 树的直径

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  3. bzoj:1776: [Usaco2010 Hol]cowpol 奶牛政坛

    Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...

  4. 【BZOJ】1776: [Usaco2010 Hol]cowpol 奶牛政坛

    [题意]给定n个点的树,每个点属于一个分类,求每个分类中(至少有2个点)最远的两点距离.n<=200000 [算法]LCA [题解]结论:树上任意点集中最远的两点一定包含点集中深度最大的点(求树 ...

  5. COGS——T 803. [USACO Hol10] 政党 || 1776: [Usaco2010 Hol]cowpol 奶牛政坛

    http://www.lydsy.com/JudgeOnline/problem.php?id=1776||http://cogs.pro/cogs/problem/problem.php?pid=8 ...

  6. [bzoj1776][Usaco2010 Hol]cowpol 奶牛政坛_倍增lca

    [Usaco2010 Hol]cowpol 奶牛政坛 题目大意: 数据范围:如题面. 题解: 第一想法是一个复杂度踩标程的算法..... 就是每种政党建一棵虚树,然后对于每棵虚树都暴力求直径就好了,复 ...

  7. bzoj [Usaco2010 Hol]cowpol 奶牛政坛【树链剖分】

    意识流虚树 首先考虑只有一个党派,那么可以O(n)求树的直径,步骤是随便指定一个根然后找距离根最远点,然后再找距离这个最远点最远的点,那么最远点和距离这个最远点最远的点之间的距离就是直径 那么考虑多党 ...

  8. [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛

    Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...

  9. [Usaco2010 Hol]cowpol 奶牛政坛

    题目描述: 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可 ...

随机推荐

  1. SQL SERVER技术内幕之10 事务并发

    1.事务 1.1事务的定义 事务是作为单个工作单元而执行的一系列操作.定义事务边界有显式和隐式两种.显式事务的定义以BEGIN TRAN作为开始,以COMMIT TRAN提交事务,以ROLLBACK ...

  2. struts如何在Action类中操作request,session

    在servlet中,通过request.getparameter与setparameter来实现后端与前端jsp页面的数据交互,那么在struts中,也有几种方式来操作request,session实 ...

  3. [C/C++] C++抽象类

    转自:http://www.cnblogs.com/dongsheng/p/3343939.html 一.纯虚函数定义 纯虚函数是在基类中声明的虚函数,它在基类中没有定义,但要求任何派生类都要定义自己 ...

  4. bootstrap-datetimepicker 开始时间与结束时间互相约束

    JS $("#start").datetimepicker({ keyboardNavigation: false, language: 'zh-CN', forceParse: ...

  5. RT-thread 设备驱动组件之PIN设备

    在RT-thread 2.0.0正式版中引入了pin设备作为杂类设备,其设备驱动文件pin.c在rt-thread-2.0.1\components\drivers\misc中,主要用于操作芯片GPI ...

  6. 2011 Multi-University Training Contest 8 - Host by HUST

    Rank:56/147. 开场看B,是个线段树区间合并,花了2hour敲完代码...再花了30min查错..发现push_down有问题.改了就AC了. 然后发现A过了很多人.推了个公式,发现是个分段 ...

  7. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  8. InnoDB实现MVCC原理

    ​ MVCC(Multi-Version Concurrent Control),即多版本并发控制,通过保存数据在某个时间点的快照来实现,因此每个读操作都会看到一个一致性的视图,并且可以实现非阻塞的读 ...

  9. hdu5696区间的价值 -- 2016"百度之星" - 初赛(Astar Round2B)

    Problem Description 我们定义“区间的价值”为一段区间的最大值*最小值. 一个区间左端点在L,右端点在R,那么该区间的长度为(R−L+1). 现在聪明的杰西想要知道,对于长度为k的区 ...

  10. [Vue源码分析] v-model实现原理

    最近小组有个关于vue源码分析的分享会,提前准备一下… 前言:我们都知道使用v-model可以实现数据的双向绑定,及实现数据的变化驱动dom的更新,dom的更新影响数据的变化.那么v-model是怎么 ...