bzoj 1776: [Usaco2010 Hol]cowpol 奶牛政坛——树的直径
农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N。恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地。而且从每片草地出发都可以抵达其他所有草地。也就是说,这些草地和道路构成了一种叫做树的图。输入包含一个详细的草地的集合,详细说明了每个草地的父节点P_i (0 <= P_i <= N)。根节点的P_i == 0, 表示它没有父节点。因为奶牛建立了1到K一共K (1 <= K <= N/2)个政党。每只奶牛都要加入某一个政党,其中, 第i只奶牛属于第A_i (1 <= A_i <= K)个政党。而且每个政党至少有两只奶牛。 这些政党互相吵闹争。每个政党都想知道自己的“范围”有多大。其中,定义一个政党的范围是这个政党离得最远的两只奶牛(沿着双向道路行走)的距离。 比如说,记为政党1包含奶牛1,3和6,政党2包含奶牛2,4和5。这些草地的连接方式如下图所 示(政党1由-n-表示): 政党1最大的两只奶牛的距离是3(也就是奶牛3和奶牛6的距离)。政党2最大的两只奶牛的距离是2(也就是奶牛2和4,4和5,还有5和2之间的距离)。 帮助奶牛们求出每个政党的范围。
Input
Output
Sample Input
1 3
2 1
1 0
2 1
2 1
1 5
Sample Output
2
可以证明一个结论 一棵树的直径必然存在一条过深度最深的点
所以我们可以求出每种颜色最深的点 然后其他点和他求一波lca算答案就可以了
这样的复杂度是nlogn的
#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=3e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int rt,n,k,c[M],mx[M],id[M];
int first[M],cnt;
struct node{int to,next;}e[M];
int f[M][],fa[M],dep[M];
void ins(int a,int b){e[++cnt]=(node){b,first[a]}; first[a]=cnt;}
void dfs(int x){//printf("[%d]\n",x);
for(int i=;(<<i)<=dep[x];i++) f[x][i]=f[f[x][i-]][i-];
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
dep[now]=dep[x]+;
f[now][]=x;
if(dep[now]>mx[c[now]]) mx[c[now]]=dep[now],id[c[now]]=now;
dfs(now);
}
}
int find(int x,int y){
if(dep[x]<dep[y]) std::swap(x,y);
int d=dep[x]-dep[y];
for(int i=;(<<i)<=d;i++) if((<<i)&d) x=f[x][i];
if(x==y) return x;
for(int i=;i>=;i--)
if((<<i)<=dep[x]&&f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][];
}
int ans[M];
int main(){
int x,y;
n=read(); k=read();
for(int i=;i<=n;i++){
c[i]=read(); fa[i]=read();
if(fa[i]) ins(fa[i],i);
else rt=i;
}
dep[rt]=; dfs(rt);
for(int i=;i<=n;i++){
int lca=find(i,id[c[i]]);
ans[c[i]]=std::max(ans[c[i]],dep[i]+dep[id[c[i]]]-*dep[lca]);
}
for(int i=;i<=k;i++) printf("%d\n",ans[i]);
return ;
}
bzoj 1776: [Usaco2010 Hol]cowpol 奶牛政坛——树的直径的更多相关文章
- 【BZOJ1776】[Usaco2010 Hol]cowpol 奶牛政坛 树的直径
[BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛 Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N. ...
- BZOJ 1776: [Usaco2010 Hol]cowpol 奶牛政坛 LCA + 树的直径
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...
- bzoj:1776: [Usaco2010 Hol]cowpol 奶牛政坛
Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...
- 【BZOJ】1776: [Usaco2010 Hol]cowpol 奶牛政坛
[题意]给定n个点的树,每个点属于一个分类,求每个分类中(至少有2个点)最远的两点距离.n<=200000 [算法]LCA [题解]结论:树上任意点集中最远的两点一定包含点集中深度最大的点(求树 ...
- COGS——T 803. [USACO Hol10] 政党 || 1776: [Usaco2010 Hol]cowpol 奶牛政坛
http://www.lydsy.com/JudgeOnline/problem.php?id=1776||http://cogs.pro/cogs/problem/problem.php?pid=8 ...
- [bzoj1776][Usaco2010 Hol]cowpol 奶牛政坛_倍增lca
[Usaco2010 Hol]cowpol 奶牛政坛 题目大意: 数据范围:如题面. 题解: 第一想法是一个复杂度踩标程的算法..... 就是每种政党建一棵虚树,然后对于每棵虚树都暴力求直径就好了,复 ...
- bzoj [Usaco2010 Hol]cowpol 奶牛政坛【树链剖分】
意识流虚树 首先考虑只有一个党派,那么可以O(n)求树的直径,步骤是随便指定一个根然后找距离根最远点,然后再找距离这个最远点最远的点,那么最远点和距离这个最远点最远的点之间的距离就是直径 那么考虑多党 ...
- [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛
Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...
- [Usaco2010 Hol]cowpol 奶牛政坛
题目描述: 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可 ...
随机推荐
- 【数位DP】题集
1.[HDOJ2089] 题意:求区间内不出现4和62的数的个数 解法:模板题 2.[HDOJ3555] 题意:求区间内不出现49的数的个数 解法:模板题 3.[HDOJ5179] 题意:对于一个十进 ...
- OSG学习:多重纹理映射
#include<osgViewer\Viewer> #include<osg\Node> #include<osg\Geode> #include<osg\ ...
- css那些事儿4 背景图像
background:背景颜色,图像,平铺方式,大小,位置 能够显示背景区域即为盒子模型的填充和内容部分,其中背景图像将会覆盖背景颜色.常见的水平或垂直渐变颜色背景通常使用水平或垂直渐变的背景图像在水 ...
- #Leetcode# 700. Search in a Binary Search Tree
https://leetcode.com/problems/search-in-a-binary-search-tree/ Given the root node of a binary search ...
- 理解BitSet
先来看几道面试题: 1.统计40亿个数据中没有出现的数据,将40亿个不同数据进行排序. 2.现在有1千万个随机数,随机数的范围在1到1亿之间,要求写出一种算法,将1到1亿之间没有在随机数中的数求出来. ...
- 【Linux】- Ubuntu安装nginx
安装 执行命令: sudo apt-get install nginx 执行如图: 防火墙设置 查看防火墙状态: sudo ufw status 查看可以穿过防火墙的应用列表: sudo ufw ap ...
- 关键系统的JVM参数推荐
1. 性能篇 1.1 建议的性能参数 1. 取消偏向锁: -XX:-UseBiasedLocking JDK1.6开始默认打开的偏向锁,会尝试把锁赋给第一个访问它的线程,取消同步块上的synchron ...
- Qt编码设置
1.Qt Creator -> 工具 -> 选项 -> 环境 - >概要 -> 语言 Qt Creator本身界面的语言选择,与cpp文件编码无关,与可执行文件显示 ...
- Python 文件对象和方法
Python文件对象和方法 1.打开和关闭文件 Python提供了必要的函数和方法进行默认情况下的文件基本操作,我们可以用file对象做大部分文件操作. open()方法 我们必须先用Python内置 ...
- BZOJ4832 抵制克苏恩(概率期望+动态规划)
注意到A+B+C很小,容易想到设f[i][A][B][C]为第i次攻击后有A个血量为1.B个血量为2.C个血量为3的期望伤害,倒推暴力转移即可. #include<iostream> #i ...