2018.07.04 POJ 1265 Area(计算几何)
Area
Time Limit: 1000MS Memory Limit: 10000K
Description
Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.

You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
The first line contains the number of scenarios.
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0
Scenario #2:
12 16 19.0
Source
Northwestern Europe 2001
前置技能111:pickpickpick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b÷2−1S=a+b÷2-1S=a+b÷2−1,其中aaa表示多边形内部的点数,bbb表示多边形边界上的点数,sss表示多边形的面积。
前置技能222:多边形上的格点数 = gcd(abs(x2−x1),abs(y2−y1))gcd(abs(x2-x1),abs(y2-y1))gcd(abs(x2−x1),abs(y2−y1))
前置技能333:利用叉积计算多边形面积。
然后就没啥了,就是一道简单的计算几何题。
代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define M 105
using namespace std;
struct pot{
int x,y;
}p[M];
int t,m,ans=0,ans1=0,ans2=0;
inline int cross(pot a,pot b){return a.x*b.y-a.y*b.x;}
inline int gcd(int a,int b){
while(b){
int t=a;
a=b;
b=t%a;
}
return a;
}
int main(){
scanf("%d",&t);
for(int j=1;j<=t;++j){
scanf("%d",&m);
p[0].x=0,p[0].y=0;
ans=ans1=0;
for(int i=1;i<=m;++i){
scanf("%d%d",&p[i].x,&p[i].y);
ans1+=gcd(abs(p[i].x),abs(p[i].y));
p[i].x+=p[i-1].x,p[i].y+=p[i-1].y;
ans+=cross(p[i-1],p[i]);
}
ans2=(ans+2-ans1)/2;
printf("Scenario #%d:\n",j);
printf("%d %d %d",ans2,ans1,ans>>1);
if(ans&1)printf(".5");
else printf(".0");
puts("");
puts("");
}
return 0;
}
2018.07.04 POJ 1265 Area(计算几何)的更多相关文章
- 2018.07.04 POJ 1654 Area(简单计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...
- 2018.07.04 POJ 3304 Segments(简单计算几何)
Segments Time Limit: 1000MS Memory Limit: 65536K Description Given n segments in the two dimensional ...
- 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...
- 2018.07.04 POJ 1113 Wall(凸包)
Wall Time Limit: 1000MS Memory Limit: 10000K Description Once upon a time there was a greedy King wh ...
- 2018.07.04 POJ 1696 Space Ant(凸包卷包裹)
Space Ant Time Limit: 1000MS Memory Limit: 10000K Description The most exciting space discovery occu ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
随机推荐
- PHP 实现-多线程编程
前些天帮同事查一个问题,第一次接触到了 PHP 的多线程,原以为 PHP 普遍都是单线程模型,并不适合多线程领域,花些时间翻了几个多线程的项目源码之后,发现 PHP 的多线程也颇有可取之处,活用起来, ...
- ajax 遍历json一维数组
$.each(data,function(index,value){}data必须是Object类型index是数组的下标value可以是一个对象 function myonclick() { var ...
- 快速预热Buffer_Pool缓冲池
在之前的版本里,如果一台高负荷的机器重启后,内存中大量的热数据被清空,此时就会重新从磁盘加载到Buffer_Pool缓冲池里,这样当高峰期间,性能就会变得很差,连接数就会很高. 在MySQL5.6里, ...
- 面向对象三大特性一一多态(polymorphism)
package com.bjsxt.oop.polymorphism; public class Animal { public void voice(){ System.out.println(&q ...
- spark性能调优 数据倾斜 内存不足 oom解决办法
[重要] Spark性能调优——扩展篇 : http://blog.csdn.net/zdy0_2004/article/details/51705043
- IPMS 元件实作
一.改用zg框架的jsp 1.引入表头和表尾jsp <%@ include file="../../jsp/menuHeader.jsp"%> <%@ inclu ...
- 元素的定位id和name
1.元素定位: 元素的定位是自动化测试的核心,要想操作一个元素,首先应该识别这个元素 webdriver提供了一系列的元素定位方法,常用的有以下几种 id name class name partia ...
- 300最长上升子序列 · Longest Increasing Subsequence
[抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...
- swift 约束 - SnapKit 适配iPhoneX 安全区 和苹果自带的VFL ,auto layout 安全区适配
这里tableview 是从最顶上的安全区适配的, nextBtn是最下边从安全区设置的,如果是在中间的view还是原来的写法,看2 1.安全区适配适用于Vc里面, 如果是自定义的view或封装的vi ...
- Tomcat设置默认时区
本文讲解如何在tomcat启动时设置JVM默认时区. 环境:JDK1.8.114 web容器:Tomcat 9 tomcat启动脚本 /etc/init.d/tomcat 操作系统ubuntu 16 ...