$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数

/** @Date    : 2017-09-26 23:01:05
* @FileName: HDU 2841 容斥 或 反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
LL phi[N];
LL sum[N];
LL mu[N];
int c = 0;
void prime()
{
MMF(phi);
phi[1] = 1;
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!phi[i]) pri[c++] = i, phi[i] = i - 1, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
phi[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
phi[i * pri[j]] = phi[i] * pri[j];
mu[i * pri[j]] = 0;
break;
}
else phi[i * pri[j]] = phi[i] * (pri[j] - 1), mu[i * pri[j]] = -mu[i];
}
}
sum[0] = 0;
for(int i = 1; i < N; i++)
sum[i] = sum[i - 1] + mu[i];
}
int main()
{
prime();
int T;
cin >> T;
while(T--)
{
LL n, m;
cin >> n >> m;
int mi = min(n, m);
LL ans = 0;
for(int i = 1, last; i <= mi; i = last + 1)
{
last = min((n/(n/i)) ,(m/(m/i)));
ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]);
}
cout << ans << endl;
}
return 0;
}

HDU 2841 容斥 或 反演的更多相关文章

  1. HDU 1695 容斥

    又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...

  2. HDU 4135 容斥

    问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...

  3. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  4. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  5. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  6. cf900D. Unusual Sequences(容斥 莫比乌斯反演)

    题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...

  7. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  8. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  9. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

随机推荐

  1. 【CS231N】7、卷积神经网络

    一.疑问 1. assignments2 在代码文件FullyConnectedNets.ipynd 中,有代码如下: # Test the affine_forward function num_i ...

  2. Node.js记录

    在智能社上听了一些关于node.js的视频,总结一小部分内容,都是总结老师讲的知识点,并且也是在不断学习的过程,所以会不断更新.也是为了怕自己遗忘一些知识点,同时现今没有什么项目可以让我去真正实践,这 ...

  3. 用jar包运行带GUI的java游戏

    这是从某论坛下载的java游戏demo,由于年代久远,所以没有记下出处.重要的是,这是一个带GUI的java程序. 链接: https://pan.baidu.com/s/1LjQ2bQPXvW-ti ...

  4. Hadoop HA 深度解析

    社区hadoop2.2.0 release版本开始支持NameNode的HA,本文将详细描述NameNode HA内部的设计与实现. 为什么要Namenode HA? 1. NameNode High ...

  5. SQL Server 无法连接到本地服务器

    未找到或无法访问服务器.请验证实例名称是否正确并且 SQL Server 已配置为允许远程连接:     解决办法: 在服务中启动SQL Server (MSSQLSERVER)这个服务.

  6. c语言文法定义

    <程序>→<外部声明>|<程序><外部声明> <外部声明>→<函数定义>|<声明> <函数定义>→< ...

  7. 『编程题全队』Alpha 阶段冲刺博客Day3

    1.每日站立式会议 1.会议照片 2.昨天已完成的工作统计 孙志威: 1.添加团队模块的标题栏 2.测试客户端和服务器之间的通讯基本连通性 3.完成团队模块的燃尽图模块 孙慧君: 1.完成了水印的设计 ...

  8. Windows 10 正式版原版ISO镜像

    Win10正式版32位简体中文版(含家庭版.专业版)文件名: cn_windows_10_multiple_editions_x86_dvd_6846431.isoSHA1:21B824F402927 ...

  9. isset与empty 的区别

    isset()与empty()函数的区别,isset()只需要验证一个值是否存在: 而empty()不但需验证这个值是否存在,还需检验它的值是否非空和非0: 注:isset()只检验一个变量是否已经设 ...

  10. linq 左连接实现两个集合的合并

    //第一个集合为所有的数据 var specilist = new List<Me.SpecificationsInfo>(); var resultall = (from a in db ...