HDU 4685 Prince and Princess 二分图匹配+tarjan
Prince and Princess
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=4685
Description
There are n princes and m princesses. Princess can marry any prince. But prince can only marry the princess they DO love.
For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and princess that can marry.
Now for each prince, your task is to output all the princesses he can marry. Of course if a prince wants to marry one of those princesses,the maximum number of marriage pairs of the rest princes and princesses cannot change.
Input
The first line of the input contains an integer T(T<=25) which means the number of test cases.
For each test case, the first line contains two integers n and m (1<=n,m<=500), means the number of prince and princess.
Then n lines for each prince contain the list of the princess he loves. Each line starts with a integer ki(0<=ki<=m), and then ki different integers, ranging from 1 to m denoting the princesses.
Output
For each test case, first output "Case #x:" in a line, where x indicates the case number between 1 and T.
Then output n lines. For each prince, first print li, the number of different princess he can marry so that the rest princes and princesses can still get the maximum marriage number.
After that print li different integers denoting those princesses,in ascending order.
Sample Input
2
4 4
2 1 2
2 1 2
2 2 3
2 3 4
1 2
2 1 2
Sample Output
Case #1:
2 1 2
2 1 2
1 3
1 4
Case #2:
2 1 2
Hint
题意
有n个王子,m个公主
每个王子喜欢ki个公主,现在把每个王子喜欢的公主都给了出来
国王叫大臣制作一张表,输出每个王子和这个公主结婚之后,满足不会影响别人结婚的条件
如果这个王子和这个公主结婚之后,依旧是一个完备匹配的话,就输出
题解:
和poj 1904不一样的是,这道题并没有给出完备匹配,而且男女人数不相等
这一点的话,我们可以先求一个二分图的最大匹配之后,假设匹配数是cnt
那么把左右两边的点都补充为n+m-cnt个点,然后再跑二分图
跑完之后就可以得到完备匹配了,然后就和1904做法一样了。
空间注意开大一点,不然会迷之wa……
不过我的做法不一样,我后面跑tarjan的时候,是让公主之间连边,让这个王子匹配的公主,和他喜欢的公主连边
然后跑的tarjan
代码
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 3e3+6;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,k,dfn[maxn],low[maxn],_clock=0,sta[maxn],top;
bool in_sta[maxn];
int changed[maxn],scc,num[maxn],vis[maxn],Left[maxn],Rht[maxn],mp[1005][1005];
vector<int> E[maxn],G[maxn];
vector<int>lft[maxn];
vector<int> ans;
void init()
{
memset(Rht,0,sizeof(Rht));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(sta,0,sizeof(sta));
memset(in_sta,0,sizeof(in_sta));
memset(changed,0,sizeof(changed));
memset(num,0,sizeof(num));
memset(vis,0,sizeof(vis));
memset(mp,0,sizeof(mp));
memset(Left,-1,sizeof(Left));
for(int i=0;i<maxn;i++)E[i].clear(),G[i].clear();
for(int i=0;i<maxn;i++)lft[i].clear();
scc=0;top=0;_clock=0;
}
void tarjan(int x)
{
dfn[x]=low[x]=++_clock;
sta[++top]=x;
in_sta[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(!dfn[v])
tarjan(v),low[x]=min(low[x],low[v]);
else if(in_sta[v])
low[x]=min(low[x],dfn[v]);
}
if(dfn[x]==low[x])
{
int temp;
++scc;
do{
temp = sta[top--];
in_sta[temp]=0;
changed[temp]=scc;
++num[scc];
}while(temp!=x);
}
}
void add(int x,int y)
{
lft[x].push_back(y);
}
int dfs2(int x){
for(int i=0;i<lft[x].size();i++){
int it=lft[x][i];
if(Left[it] == -1){
Left[it] = x;
Rht[x]=it;
return 1;
}
if(vis[it]) continue;
vis[it] = 1;
if(dfs2(Left[it])){
Left[it] = x;
Rht[x]=it;
return 1;
}
}
return 0;
}
void solve(int cas)
{
init();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
int x=read();
for(int j=0;j<x;j++)
{
int y=read();
add(i,n+y);
G[i].push_back(y);
}
}
int cnt=0;
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
cnt+=dfs2(i);
}
for(int i=0;i<maxn;i++)lft[i].clear();
memset(Left,-1,sizeof(Left));
for(int i=1;i<=n;i++)
{
for(int j=0;j<G[i].size();j++)
{
mp[i][G[i][j]]=1;
add(i,n+m-cnt+G[i][j]);
}
}
for(int i=n+1;i<=n+m-cnt;i++)
{
for(int j=1;j<=n+m-cnt;j++)
{
mp[i][j]=1;
add(i,n+m-cnt+j);
}
}
for(int i=1;i<=n;i++)
{
for(int j=m+1;j<=n+m-cnt;j++)
{
mp[i][j]=1;
add(i,n+m-cnt+j);
}
}
for(int i=1;i<=n+m-cnt;i++)
{
memset(vis,0,sizeof(vis));
dfs2(i);
}
for(int i=1;i<=n+m-cnt;i++)
{
for(int j=1;j<=n+m-cnt;j++)
{
if(Rht[i]-n-m+cnt!=j&&mp[i][j])
E[Rht[i]-n-m+cnt].push_back(j);
}
}
for(int i=1;i<=(n+m-cnt);i++)
if(!dfn[i])tarjan(i);
printf("Case #%d:\n",cas);
for(int i=1;i<=n;i++)
{
ans.clear();
for(int j=1;j<=m;j++)
{
if(mp[i][j]&&changed[Rht[i]-n-m+cnt]==changed[j])
ans.push_back(j);
}
printf("%d",ans.size());
for(int j=0;j<ans.size();j++)
printf(" %d",ans[j]);
printf("\n");
}
}
int main()
{
int t;
scanf("%d",&t);
for(int i=1;i<=t;i++)
solve(i);
return 0;
}
HDU 4685 Prince and Princess 二分图匹配+tarjan的更多相关文章
- HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU 4685 Prince and Princess(二分图+强连通分量)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:给出n个王子和m个公主.每个王子有一些自己喜欢的公主可以匹配.设最大匹配为M.那么对于每个 ...
- HDU 4685 Prince and Princess(二分匹配+强联通分量)
题意:婚配问题,但是题目并不要求输出最大匹配值,而是让我们输出,一个王子可以与哪些王妃婚配而不影响最大匹配值. 解决办法:先求一次最大匹配,如果有两个已经匹配的王妃,喜欢她们两个的有两个或者以上相同的 ...
- hdu 4685 Prince and Princess(匈牙利算法 连通分量)
看了别人的题解.须要用到匈牙利算法的强连通算法 #include<cstdio> #include<algorithm> #include<vector> #pra ...
- HDU 4685 Prince and Princess
强连通分量,看大神的题解才会写的.... http://www.cnblogs.com/kuangbin/p/3261157.html 数据量有点大,第一次Submit 2995ms过的,时限3000 ...
- HDU4685:Prince and Princess(二分图匹配+tarjan)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- hdu 3829 Cat VS Dog 二分图匹配 最大点独立集
Cat VS Dog Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Prob ...
- HDU 2236 无题II(二分图匹配+二分)
HDU 2236 无题II 题目链接 思路:行列仅仅能一个,想到二分图,然后二分区间长度,枚举下限.就能求出哪些边是能用的,然后建图跑二分图,假设最大匹配等于n就是符合的 代码: #include & ...
- TTTTTTTTTTTTTTTT hdu 5727 Necklace 阴阳珠 二分图匹配+暴力全排列
Necklace Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
随机推荐
- Python标准库笔记(8) — pprint模块
struct模块提供了用于在字节字符串和Python原生数据类型之间转换函数,比如数字和字符串. Python版本: 2.x & 3.x 该模块作用是完成Python数值和C语言结构体的Pyt ...
- ASP.net-空白页的问题
protected void Application_Error(object sender, EventArgs e) { ILog log = LogMan ...
- 读书笔记 effective c++ Item 52 如果你实现了placement new,你也要实现placement delete
1. 调用普通版本的operator new抛出异常会发生什么? Placement new和placement delete不是C++动物园中最常遇到的猛兽,所以你不用担心你对它们不熟悉.当你像下面 ...
- linux快速安装mysql教程
#安装mysql服务器:yum install mysql-server #设置开机启动chkconfig mysqld on#现在启动服务service mysqld start #设置root初始 ...
- Flask:文件配置方式实践及其中的各种问题记录
Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2, 提示: 1.请查看本文后面的“18-07-17 11:18重大纠正” ! 2.flask run命令运行时传入参数 ...
- 【前端开发】禁止微信内置浏览器调整字体大小的方法js
微信webview内置了调整字体大小的功能,用户可以根据实际情况进行调节.但是很多移动端页面的开发都是使用rem作为单位的,字体大小改变以后,会出现页面布局错乱的情况,因此希望能够禁止微信的字体放大功 ...
- python基础--random模块
python使用random生成随机数 下面是主要函数random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0random.randint(a, b)生成的 ...
- java基础30 List集合下的LinkedList集合
单例集合体系: ---------| collection 单例集合的根接口--------------| List 如果实现了list接口的集合类,具备的特点:有序,可重复 注:集合 ...
- Java事务管理之JDBC
前言 关于Java中JDBC的一些使用可以参见: Java 中使用JDBC连接数据库例程与注意事项 在使用JDBC的使用, 如何进行事务的管理.直接看一下代码 示例代码 /** * @Title: J ...
- MySQL学习笔记:生成一个时间序列
今天遇到一个需求是生成以下表格的数据,一整天24小时,每秒一行数据. 寻找颇旧,找到另外两个实现的例子,暂且学习一翻.另一个见另外一篇. DAY) AS DATE FROM ( ) AS tmp, ( ...