Description

题库链接

在一个环上有 \(n\) 个物品,第 \(i\) 个物品的出现时间为 \(T_i\) 。一开始你可以任意选择一个物品的位置作为起始位置,然后以这个位置为起点沿正方向走,走一个单位花一个单位的时间,不能调头,可以停留。问至少多少时间可以取完所有的物品。一个物品 \(i\) 能被取当且仅当到达该物品的位置时时间 \(\geq T_i\) ,初始时间为 \(0\) 。支持 \(m\) 次单点修改,强制在线。

\(3\leq n\leq 10^5,0\leq m\leq 10^5\)

Solution

推推性质,容易得到这样的一个结论:不会走到相同的地方两次。换句话说就是相当于选定起点之后,每走到一个位置一定会等到该位置的物品出现取上该物品后再继续走。

感性证明下:考虑为什么会有不符合上述情况的走法,显然是一个离我较远的物品比离我较近的物品先出现,并且早的多,那么我就需要先去取较远的物品再走一圈回来取这个出现时间较晚的物品。不过这样的话,我可以直接把起点放在那个较远的物品处,显然答案不会比我这样走的答案差。

既然有这样的结论,我们先将数组倍长,可以枚举起点,再在起点向右枚举 \(n\) 个,统计一下最大值,最后取个最小值即可。不过这样单次操作就是 \(O(n^2)\) 的,肯定过不了...

考虑到答案就是求:

\[\min_{1\leq i\leq n}\left\{\max_{i\leq j\leq i+n-1}\left\{T_j+(n-1-(j-i))\right\}\right\}\]

其实这个是和式子

\[\min_{1\leq i\leq n}\left\{\max_{i\leq j\leq 2n}\left\{T_j+(n-1-(j-i))\right\}\right\}\]

是等价的。

将式子变一下形,记 \(a_i=T_i-i\)

\[\min_{1\leq i\leq n}\left\{\max_{i\leq j\leq 2n}\left\{a_j\right\}+i\right\}+n-1\]

考虑如何维护这个东西。

我们让线段树每个节点 \(o\) (控制区间为 \([l,r]\) )维护两个值 \(maxn_o\) 和 \(val_o\) 。表示区间 \(a_i\) 最值和 \(\min\limits_{l\leq i\leq mid}\left\{\max\limits_{i\leq j\leq r}\left\{a_j\right\}+i\right\}\) 。

考虑如何维护这个 \(val_o\) 。

对于每个线段树中的非叶子节点,我们需要合并左右儿子的信息。主要的就是考虑右儿子的值会对左儿子中的起点产生影响。

我们不妨记当前节点的右儿子的 \(maxn\) 为 \(mx\) 。

对于左儿子 \(ls\) ,如果他的右儿子的 \(maxn\geq mx\) ,显然 \(ls\) 的左儿子的 \(val\) 值可以直接用;右儿子无法确定,递归处理右儿子。

如果 \(ls\) 的右儿子的 \(maxn\leq mx\) ,显然 \(ls\) 的右儿子的内起点的最小值一定是 \(mid+1+mx\) ;左儿子无法确定,递归处理左儿子。

显然对于每次更新需要 \(\log\) 的递归询问。

至于更新,只要更新线段树一条链上的所有节点。线段树维护的总复杂度为 \(O(n\log_2^2 n)\) 。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5+5; int n, m, p, t[N], a[N], x, y, last;
struct Segment_tree {
#define lr(o) (o<<1)
#define rr(o) (o<<1|1)
int maxn[N<<2], val[N<<2];
int query(int o, int l, int r, int mx) {
if (l == r) return l+max(mx, maxn[o]); int mid = (l+r)>>1;
if (mx <= maxn[rr(o)]) return min(val[o], query(rr(o), mid+1, r, mx));
else return min(mid+mx+1, query(lr(o), l, mid, mx));
}
void pushup(int o, int l, int mid, int r) {
val[o] = query(lr(o), l, mid, maxn[rr(o)]);
maxn[o] = max(maxn[lr(o)], maxn[rr(o)]);
}
void build(int o, int l, int r) {
if (l == r) {maxn[o] = a[l], val[o] = l+a[l]; return; }
int mid = (l+r)>>1;
build(lr(o), l, mid), build(rr(o), mid+1, r);
pushup(o, l, mid, r);
}
void update(int o, int l, int r, int loc) {
if (l == r) {maxn[o] = a[l], val[o] = l+a[l]; return; }
int mid = (l+r)>>1;
if (loc <= mid) update(lr(o), l, mid, loc);
else update(rr(o), mid+1, r, loc);
pushup(o, l, mid, r);
}
}T; void work() {
scanf("%d%d%d", &n, &m, &p);
for (int i = 1; i <= n; i++)
scanf("%d", &t[i]), a[i] = t[i]-i, a[i+n] = t[i]-n-i;
T.build(1, 1, n<<1);
printf("%d\n", last = T.val[1]+n-1);
while (m--) {
scanf("%d%d", &x, &y); x ^= last*p, y ^= last*p;
t[x] = y, a[x] = t[x]-x, a[x+n] = t[x]-n-x;
T.update(1, 1, n<<1, x), T.update(1, 1, n<<1, x+n);
printf("%d\n", last = T.val[1]+n-1);
}
}
int main() {work(); return 0; }

[HNOI 2018]转盘的更多相关文章

  1. [HNOI/AHOI2018]转盘(线段树优化单调)

    gugu  bz lei了lei了,事独流体毒瘤题 一句话题意:任选一个点开始,每个时刻向前走一步或者站着不动 问实现每一个点都在$T_i$之后被访问到的最短时间 Step 1 该题可证: 最优方案必 ...

  2. 【HNOI 2018】转盘

    Problem Description 一次小 \(G\) 和小 \(H\) 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1\) 至 \(n ...

  3. HNOI 2018 简要题解

    寻宝游戏 毒瘤题. 估计考试只会前30pts30pts30pts暴力然后果断走人. 正解是考虑到一个数&1\&1&1和∣0|0∣0都没有变化,&0\&0& ...

  4. [HNOI 2018]道路

    Description 题库链接 给出一棵含有 \(n\) 个叶子节点的二叉树,对于每个非叶子节点的节点,其与左儿子相连的边为公路,其与右儿子相连的边为铁路.对于每个节点,选择一条与其儿子相连的铁路或 ...

  5. [HNOI 2018]游戏

    Description 题库链接 有 \(n\) 个房间排成一列,编号为 \(1,2,...,n\) ,相邻的房间之间都有一道门.其中 \(m\) 个门上锁,其余的门都能直接打开.现在已知每把锁的钥匙 ...

  6. [HNOI 2018]排列

    Description 题库链接 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le ai \le n\) ,以及 \(n\) 个整数 \(w_1, w_2, \do ...

  7. 【HNOI 2018】毒瘤

    Problem Description 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的数据结构题:给出一个数组,要求支持若干种奇奇怪怪的修改操作(例如给一个区间内的数同时加上 \(c ...

  8. 【HNOI 2018】排列

    Problem Description 给定 \(n\) 个整数 \(a_1, a_2, \ldots , a_n(0 \le a_i \le n)\),以及 \(n\) 个整数 \(w_1, w_2 ...

  9. 【HNOI 2018】游戏

    Problem Description 一次小 \(G\) 和小 \(H\) 在玩寻宝游戏,有 \(n\) 个房间排成一列,编号为 \(1,2,-,n\),相邻房间之间都有 \(1\) 道门.其中一部 ...

随机推荐

  1. Code First 更新数据库 记录

    每次都会忘记这个,所以记录一下 第一步:打开程序包管理控制台 第二步:启动迁移配置 第三步: 更新数据库的迁移的名称 因为设置了多个context,所以要指定更新的是哪一个库. 如果没有指定,会出现下 ...

  2. 使用ABP框架踩过的坑系列4

    数据库连接和事务管理,是数据库应用中的最重要概念之一.做过的人,都会头疼:何时Open一个连接?何时Start一个事务?何时Dispose这个连接?... ABP框架试图用一个叫做UnitOfWork ...

  3. C#中获取用户登录IP地址

    using System.Net; //导入命名空间 public string getLocalIP() { string strHostName = Dns.GetHostName(); //得到 ...

  4. Python常用第三方模块(长期更新)

    1.keyboard #监控键盘 2.PIL#处理图片 3.operator #操作列表 4.shelve #数据存储方案 保存dat文件 5.optparse #处理命令行参数 6.configpa ...

  5. 《JavaScript高级程序设计》5.5 Function类型

    5.5 Function类型 函数实质上是对象, 每个函数都是Function类型的实例, 并且都和其他引用类型一样具有属性和方法. 因此函数名实际上也是一个指向函数对象的指针, 不会与某个函数绑定. ...

  6. 敏捷开发-代码提交流程& 安装gerrit

  7. Day 20 Time 模块.

    from collections import namedtuplePoint =namedtuple("Point",["x","y"]) ...

  8. redis 数据备份持久化方案

    本文链接:http://www.cnblogs.com/zhenghongxin/p/9050219.html 使用两种备份方案 备份方案选择RDB和AOF同时进行备份,必须打开AOF的持久化机制,除 ...

  9. Mac 切换到行首和行末的方法

    苹果笔记本没有home键和end键 但是使用 command + 方向键左键可以回到行首, command + 方向键右键可以去到行末

  10. 二叉堆的实现(数组)——c++

    二叉堆的介绍 二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆.最大堆:父结点的键值总是大于或等于任何一个子节点的键值:最小堆:父结点的键值总是小于或等于任何一个 ...