codeforces 348D Turtles

题意

题解

代码

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(a) (int)a.size()
#define de(a) cout << #a << " = " << a << endl
#define dd(a) cout << #a << " = " << a << " "
#define all(a) a.begin(), a.end()
#define endl "\n"
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
//--- const int N = 3030, P = 1e9+7; int n, m;
int dp[2][N][N];
string s[N]; inline int add(int x, int y) {
int res = x + y;
if(res >= P) res -= P;
return res;
}
inline int mul(int x, int y) {
return 1ll * x * y % P;
} int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cin >> n >> m;
rep(i, 1, n+1) {
cin >> s[i];
s[i] = " " + s[i];
}
dp[0][1][2] = (s[1][2] == '.');
dp[1][2][1] = (s[2][1] == '.');
rep(i, 1, n+1) rep(j, 1, m+1) if(s[i][j] == '.') {
rep(t, 0, 2) dp[t][i][j] = add(dp[t][i][j], add(dp[t][i-1][j], dp[t][i][j-1]));
}
int ans = mul(dp[0][n-1][m], dp[1][n][m-1]);
int res = mul(dp[0][n][m-1], dp[1][n-1][m]);
ans = add(ans, P - res);
cout << ans << endl;
return 0;
}

codeforces 348D Turtles的更多相关文章

  1. Codeforces 348D Turtles LGV

    Turtles 利用LGV转换成求行列式值. #include<bits/stdc++.h> #define LL long long #define fi first #define s ...

  2. Codeforces.348D.Turtles(容斥 LGV定理 DP)

    题目链接 \(Description\) 给定\(n*m\)的网格,有些格子不能走.求有多少种从\((1,1)\)走到\((n,m)\)的两条不相交路径. \(n,m\leq 3000\). \(So ...

  3. CodeForces - 348D Turtles(LGV)

    https://vjudge.net/problem/CodeForces-348D 题意 给一个m*n有障碍的图,求从左上角到右下角两条不相交路径的方案数. 分析 用LGV算法.从(1,1)-(n, ...

  4. CodeForces 348D Turtles(LGV定理)题解

    题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种 思路:LGV定理模板.但是定理中只能从n个不同起点走向n个不同终点,那么需要转化.显然必有一只从1 ...

  5. CodeForces - 348D:Turtles(LGV定理)

    题意:给定N*M的矩阵,'*'表示可以通过,'#'表示不能通过,现在要找两条路径从[1,1]到[N,M]去,使得除了起点终点,没有交点. 思路:没有思路,就是裸题.  Lindström–Gessel ...

  6. Codeforces 348D DP + LGV定理

    题意及思路:https://www.cnblogs.com/chaoswr/p/9460378.html 代码: #include <bits/stdc++.h> #define LL l ...

  7. LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)

    又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...

  8. LGV 算法 (Lindström–Gessel–Viennot lemma)

    e(ai,bi)为从起点ai到终点bi的方案数.以上矩阵行列式结果就是(a1,a2,...an) 到 (b1,b2,...bn) 的所有不相交路径的种数. 具体证明的话看wiki,比较长.. 这个定理 ...

  9. Lindström–Gessel–Viennot lemma 应用两则

    对于一张无边权的DAG图,给定n个起点和对应的n个终点,这n条不相交路径的方案数为 det() (该矩阵的行列式) 其中e(a,b)为图上a到b的方案数 codeforces 348D [给定一张n* ...

随机推荐

  1. [转]How to nest transactions nicely - "begin transaction" vs "save transaction" and SQL Server

    本文转自:http://geekswithblogs.net/bbiales/archive/2012/03/15/how-to-nest-transactions-nicely---quotbegi ...

  2. Deep Q-Network 学习笔记(四)—— 改进②:double dqn

    这篇没搞懂...这里只对实现做记录. 修改的地方也只是在上一篇的基础上,在“记忆回放”函数里,计算 target Q 时取值做下调整即可. def experience_replay(self): & ...

  3. GDC NEC单机自动化设置

    GDC NEC 单机自动化设置 进入播放列表   进入设置,进入登陆,请选择维修员登陆,输入密码257910   选择“一般选项”中的“自动化” 在进入的新菜单中选择“设备”,添加一个新的名称,默认的 ...

  4. Java基础教程(17)--接口

      就像类一样,接口也是引用类型.它可以包含常量,方法签名,默认方法,静态方法和嵌套类型.在接口中,只有默认方法和静态方法有方法体.但不同于类,接口无法实例化,它只能被类实现或被其他接口继承. 一.定 ...

  5. win10 安装oracle 11gR2_database出现universal Installer后闪退就没反应的解决方案

    前言:本机为 win 10 64位系统,安装oracle win64_11gR2_database的时候出现问题,安装不了,经排查解决了此问题.转载请注明出处:https://www.cnblogs. ...

  6. android chrome iframe设置src属性无法启动app

    0x01 Android Intents with Chrome Android有一个很少人知道的特性可以通过web页面发送intent来启动apps.以前通过网页启动app是通过设置iframe的s ...

  7. Java Web应用开发工具

    java Web应用开发工具详细地址:https://my.oschina.net/gitosc/blog/1538466

  8. javascript之原型

    写作背景 最近在抓基础,毕竟没有好地基盖楼容易塌啊...再回首javascript,原型可以说是该语言较为核心的设计之一,我们有必要了解下其设计理念 (#^.^#) 基本概念 MyObject.pro ...

  9. jQuery基础(常用插件 表单验证,图片放大镜,自定义对象级,jQuery UI,面板折叠)

    1.表单验证插件——validate   该插件自带包含必填.数字.URL在内容的验证规则,即时显示异常信息,此外,还允许自定义验证规则,插件调用方法如下:   $(form).validate({o ...

  10. 解决input为number类型时maxlength无效的问题

    使用input数字number类型的时候maxlength无效,假设需要控制输入数量为18,可以用以下方式: 无效: <input type="text"  maxlengt ...