「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)
学习了新姿势。。(一直看不懂大爷的代码卡了好久T T
首先数字范围那么小可以考虑枚举众数来计算答案,设当前枚举到$x$,$s_i$为前$i$个数中$x$的出现次数,则满足$2*s_r-r > 2*s_l-l$的区间$[l+1,r]$其众数为$x$,这个显然可以用一个数据结构来维护。
直接扫一遍效率是$O($数字种类数$*nlogn)$的,无法承受,但是我们发现,对于每一段非$x$的数,$2*s_i-i$是公差为$-1$的等差数列,所以它们对答案的贡献实际上可以一次性计算。设$L$为一段非$x$数的开头,$R$为结尾,则$\leq 2*s_R-R$的数贡献会被计算$len$次,$2*s_{R-1}-(R-1)$的数的贡献会被计算$len-1$次,...,$s_l-l$的数的贡献会被计算$1$次,这个贡献的计算次数也是个等差数列。
那实际上我们有三种维护这个的方法。
①维护$a_i$表示$2*s_i-i$的出现次数,支持区间加和区间查询$\sum_{i=l}^r a_i*(i-l+1)$,较为麻烦,权值线段树。
②维护$s_i$表示$a_i$的前缀和,支持区间加一段等差数列和区间查询,挺可写,权值线段树。
③维护$s_i$的前缀和,支持区间加二次函数和单点查询,代码短但因为较抽象所以有些难调,树状数组,非常快。
这里只说第三种写法,第一次见到这种操作...
树状数组里实际上维护的是$s_1,s_1+s_2,s_1+s_2+s_3,...$,所以修改一段区间的时候,相当于给一段区间加上等差数列的求和,即$((1+i-l+1)*(i-l+1))/2=(i^2+(3-2l)i+l^2+3l+2)/2$,所以我们只要在树状数组上维护二次项,一次项和常数项,区间修改用差分,最后查询一段区间只要头尾相减就好了...
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=;
int n, x, N, t;
int a[maxn], treety[maxn], pos[maxn], pre[maxn];
ll tree1[maxn], tree2[maxn], tree3[maxn], ans;
char buf[],*ptr=buf-;
inline int read()
{
char c=*++ptr;int s=,t=;
while(c<||c>)c=*++ptr;
while(c>=&&c<=){s=s*+c-'';c=*++ptr;}
return s*t;
}
inline void add(int x, int p)
{
x+=n+;
ll delta1=, delta2=-*x, delta3=1ll*x*x-*x+;
for(;x<=N;x+=x&-x)
{
if(treety[x]!=t) treety[x]=t, tree1[x]=tree2[x]=tree3[x]=;
tree1[x]+=delta1*p, tree2[x]+=delta2*p, tree3[x]+=delta3*p;
}
}
inline void query(int x, int ty)
{
x+=n+; int pos=x;
for(;x;x-=x&-x) if(treety[x]==t)
ans+=(tree1[x]*pos*pos+tree2[x]*pos+tree3[x])*ty;
}
inline void update(int l, int r, int s){add(*s-r, ); add(*s-l+, -);}
int main()
{
fread(buf,,sizeof(buf),stdin); n=read(); x=read(); N=n+n+;
for(int i=;i<=n;i++) x=read(), pre[i]=pos[x], pos[x]=i;
for(int i=;i<n;i++)
if(pos[i])
{
int cnt=; ++t;
for(int j=pos[i];j;j=pre[j]) a[++cnt]=j;
update(, a[cnt]-, );
for(int j=cnt;j;j--)
{
query(*(cnt-j+)-a[j]-, );
query(*(cnt-j+)-((j-)?a[j-]+:n+), -);
update(a[j], (j-)?a[j-]-:n, cnt-j+);
}
}
printf("%lld\n", ans>>);
}
「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)的更多相关文章
- 「CodePlus 2017 11 月赛」Yazid 的新生舞会
n<=500000的数字,问有多少个区间的众数出现次数严格大于区间长度的一半. 这么说来一个区间就一个众数了,所以第一反应是枚举数字,对下标进行处理.然后没有第二反应.很好. 在枚举一个数字的时 ...
- loj #6250. 「CodePlus 2017 11 月赛」找爸爸
#6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最 ...
- [LOJ 6249]「CodePlus 2017 11 月赛」汀博尔
Description 有 n 棵树,初始时每棵树的高度为 H_i,第 i 棵树每月都会长高 A_i.现在有个木料长度总量为 S 的订单,客户要求每块木料的长度不能小于 L,而且木料必须是整棵树(即不 ...
- [LOJ 6248]「CodePlus 2017 11 月赛」晨跑
Description “无体育,不清华”.“每天锻炼一小时,健康工作五十年,幸福生活一辈子” 在清华,体育运动绝对是同学们生活中不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不 ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)
从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...
- 「CodePlus 2017 11 月赛」可做题
这种题先二进制拆位,显然改的位置只有每一段确定的数的开头和结尾,只需要对于每一个可决策位置都尝试一下填1和0,然后取min即可. #include<iostream> #include&l ...
- 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!
n<=50000,m<=50000的图,给s和t,问有多少点对$(a,b)$满足 嗯. 不会. 首先最短路DAG造出来,然后两个条件转述一下:条件一,$N_a$表示从s到t经过a的路径,$ ...
- LOJ6252. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡! 最短路+bitset
题目传送门 https://loj.ac/problem/6252 https://lydsy.com/JudgeOnline/problem.php?id=5109 题解 首先跑最短路,只保留 \( ...
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
随机推荐
- Table 组件构建过程中遇到的问题与解决思路
在 GearCase 开源项目构建 Table 组件的过程中.遇到了各式各样的问题,最后尝试了各种方法去解决这些问题. 遇到的部分问题 checkbox 的全选和半选问题 table 组件的排序请求方 ...
- 如何在window服务器上搭建一个能代替ftp的传输工具
通常对于服务器上的文件管理和数据传输都是利用ftp来实现,但随着存储技术的发展,数据资产的存储规模和复杂程度不断提高,传统的ftp传输显得有笨重.今天给大家介绍一款能够取代ftp的在线文档管理软件—— ...
- lsblk命令详解
基础命令学习目录首页 lsblk 默认是树形方式显示: $lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTsda 8:0 0 2. ...
- RabbitMQ基础使用之集群构建
简介 RabbitMQ是基于Erlang开发的一种消息队列服务,本篇文章主要部署三台机器用来实现集群的普通模式与镜像模式!欢迎大家吐槽交流学习! 特点 集群节点包括内存节点和磁盘节点,有了磁盘节点就支 ...
- mysql更新表数据时报错 You can't specify target table 'RES_CATALOG_CLASSIFY' for update in FROM clause
You can't specify target table for update in FROM clause含义:不能在同一表中查询的数据作为同一表的更新数据. 将sql语句 UPDATE RES ...
- Linux环境下服务器环境搭建-mysql
下载对应版本的mysql.rpm(Linux 6 安装el6 Linux 7 安装el7) 安装环境 centos 7,安装版本mysql57-community-release-el7-9.noar ...
- 福大软工1816 · 评分结果 · beta冲刺总评
作业地址:beta答辩总结.beta冲刺7.beta冲刺6.beta冲刺5.beta冲刺4.beta冲刺3.beta冲刺2.beta冲刺1.beta冲刺前准备 作业提交准则 按时交 - 有分 晚交 - ...
- [不明所以]android 5.0 couldn't find "libmsc.so"
用5.0 mi2调试的时候 search那边不行, 出现...couldn't find "libmsc.so" 我这边情况的解决方法是 在armeabi的libmsc.so复制一 ...
- 西门子S7系列PLC的主要种类及应用软件
德国西门子(SIEMENS)公司生产的可编程序控制器在我国的应用也相当广泛,在冶金.化工.印刷生产线等领域都有应用.西门子(SIEMENS)公司的PLC产品包括LOGO,S7-200,S7-300,S ...
- 实测 | 转型微服务,这4大工具谁是API网关性能最优?
转自:http://www.servicemesh.cn/?/article/45 作者:Turgay Çelik 翻译:钟毅(Drew Zhong) 原文:Comparing API Gateway ...