题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4597

题目大意:

有两行卡片,每个卡片都有各自的权值。

两个人轮流取卡片,每次只能从任一行的左端或右端取卡片。

假设两人都足够聪明,求先手能够取到的最大权值之和。

解题思路:

这题就归为区间DP吧,设dp[l1][r1][l2][r2]表示取完第一行[l1,r1]和第二行[l2,r2]的卡片时,先手能够获得的最大权值。

那么跟(l1,r1,l2,r2)关联的区间只有四个:

(l1+1,r1,l2,r2)

(l1,r1-1,l2,r2)

(l1,r1,l2+1,r2)

(l1,r1,l2,r2-1)

那么状态转移方程就为:

dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-solve(l1+1,r1,l2,r2)),(l1<=r1)
dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-solve(l1,r1-1,l2,r2)),(l1<=r1)

dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-solve(l1,r1,l2+1,r2)),(l2<=r2)
dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-solve(l1,r1,l2,r2-1)),(l2<=r2)

其中sum为第一行[l1,r1]和第二行[l2,r2]卡片权值之和,

从子区间推过来相当于先后手顺序发生了改变,所以sum-子区间最优解相当于取反,就是原来先手的操作变成后手,后手变成先手。

那么我们为什么要从最优子区间解里推过来呢,那样不就变成了让后手有了较优解了吗,不就让先手获得的权值变少了吗?因为题目说了两人足够聪明,选取的都是最优解。

代码:

 #include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<string>
#define lc(a) (a<<1)
#define rc(a) (a<<1|1)
#define MID(a,b) ((a+b)>>1)
#define fin(name) freopen(name,"r1",stdin)
#define fout(name) freopen(name,"w",stdout)
#define clr(arr,val) memset(arr,val,sizeof(arr))
#define _for(i,start,end) for(int i=start;i<=end;i++)
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef long long LL;
const int N=;
const int INF=0x3f3f3f3f;
const double eps=1e-; int a[N],b[N];
int dp[N][N][N][N]; int solve(int l1,int r1,int l2,int r2){
if(dp[l1][r1][l2][r2]!=-)
return dp[l1][r1][l2][r2]; int ans=,sum=;
if(l1<=r1)
sum+=a[r1]-a[l1-];
if(l2<=r2)
sum+=b[r2]-b[l2-];
//从子区间推过来相当于先后手顺序发生了改变,所以用减相当于取反
if(l1<=r1){
ans=max(ans,sum-solve(l1+,r1,l2,r2));
ans=max(ans,sum-solve(l1,r1-,l2,r2));
}
if(l2<=r2){
ans=max(ans,sum-solve(l1,r1,l2+,r2));
ans=max(ans,sum-solve(l1,r1,l2,r2-));
} return dp[l1][r1][l2][r2]=ans;
} int main(){
FAST_IO;
int t;
scanf("%d",&t);
while(t--){
memset(dp,-,sizeof(dp));
int n;
scanf("%d",&n);
_for(i,,n){
cin>>a[i];
a[i]+=a[i-];
}
_for(i,,n){
cin>>b[i];
b[i]+=b[i-];
}
printf("%d\n",solve(,n,,n));
}
return ;
}

HDU 4597 Play Game(区间DP(记忆化搜索))的更多相关文章

  1. hdu 4597 Play Game(区间dp,记忆化搜索)

    Problem Description Alice and Bob are playing a game. There are two piles of cards. There are N card ...

  2. (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

    http://poj.org/problem?id=3186   Description FJ has purchased N (1 <= N <= 2000) yummy treats ...

  3. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  4. uva 10891 区间dp+记忆化搜索

    https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...

  5. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  6. HDU - 6143 Killer Names(dp记忆化搜索+组合数)

    题意:从m种字母中选取字母组成姓名,要求姓和名中不能有相同的字母,姓和名的长度都为n,问能组成几种不同的姓名. 分析: 1.从m种字母中选取i种组成姓,剩下m-i种组成名. 2.i种字母组成长度为n的 ...

  7. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  8. loj 1031(区间dp+记忆化搜索)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1031 思路:dp[i][j]表示从区间i-j中能取得的最大值,然后就是枚举分割点了. ...

  9. BZOJ1055[HAOI2008]玩具取名 【区间dp + 记忆化搜索】

    题目 某人有一套玩具,并想法给玩具命名.首先他选择WING四个字母中的任意一个字母作为玩具的基本名字.然后 他会根据自己的喜好,将名字中任意一个字母用“WING”中任意两个字母代替,使得自己的名字能够 ...

  10. HDU 1501 & POJ 2192 Zipper(dp记忆化搜索)

    题意:给定三个串,问c串是否能由a,b串任意组合在一起组成,但注意a,b串任意组合需要保证a,b原串的顺序 例如ab,cd可组成acbd,但不能组成adcb. 分析:对字符串上的dp还是不敏感啊,虽然 ...

随机推荐

  1. bzoj 1503

    1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 12311  Solved: 4399[Submit][Stat ...

  2. NAT—网络地址转换

    参考链接:http://www.qingsword.com/qing/745.html 视频链接: 一.什么是NAT? NAT --- Network Address Translation  也就是 ...

  3. 高维数据降维 国家自然科学基金项目 2009-2013 NSFC Dimensionality Reduction

    2013 基于数据降维和压缩感知的图像哈希理论与方法 唐振军 广西师范大学 多元时间序列数据挖掘中的特征表示和相似性度量方法研究 李海林 华侨大学       基于标签和多特征融合的图像语义空间学习技 ...

  4. Linux下编译Phantomjs

    1.安装依赖的库 <pre> sudo apt-get install g++ flex bison gperf ruby perl \ libsqlite3-dev libfontcon ...

  5. Java开发者应该列入年度计划的5件事

    本文写了我今年计划要做的5件事.为了能跟踪计划执行的进度,就把这些事都列了出来.我觉得这些事对其它Java开发者而言也是不错的参考方向. 1.开发一个应用,通过Java来操作一种NoSQL数据库实现存 ...

  6. Arcgis10.1 Arcobject连接Oracel数据库

    原来使用Arcgis9.3的版本,现在升级到了10.1遇到不少问题,原来初始化工作空间的代码无法正常运行了,修改后的代码如下: static void Test() { IPropertySet sd ...

  7. 【leetcode 简单】 第五十七题 删除链表中的节点

    删除链表中等于给定值 val 的所有节点. 示例: 输入: 1->2->6->3->4->5->6, val = 6 输出: 1->2->3->4 ...

  8. shell作业后台执行的方法

    来思考几种场景: 1.某个脚本需要执行时间比较长,无人值守,可能执行过程中因ssh会话超时而中断? 2.某次测试一段代码,需要临时放入后台运行? 3.放入后台运行的脚本,需要在一段时间后重新调到前台? ...

  9. Anaconda+django写出第一个web app(三)

    前面我们已经建立了模型Tutorial,也已经可以用Navicat Premium打开数据看查看数据,接下来我们通过建立admin账户来上传数据. 在命令行执行如下命令来创建用户: python ma ...

  10. flask跨域请求三行代码搞定

    flask跨域请求三行代码就可以搞定.但是请注意几点: 第一:只能返回json格式数据,比如list.ndarray等都不可以 第二:返回的对象必须是是字符串.元组.响应实例或WSGI可调用. pyt ...