题目描述

母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统。由于它们特殊的思考方式,它们对货币的数值感到好奇。

传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单位面值组成的。

母牛想知道有多少种不同的方法来用货币系统中的货币来构造一个确定的数值。

举例来说, 使用一个货币系统 {1,2,5,10,...}产生 18单位面值的一些可能的方法是:18x1, 9x2, 8x2+2x1, 3x5+2+1,等等其它。 写一个程序来计算有多少种方法用给定的货币系统来构造一定数量的面值。保证总数将会适合long long (C/C++) 和 Int64 (Free Pascal),即在0 到2^63-1之间。

输入输出格式

输入格式:

货币系统中货币的种类数目是 V (1<=V<=25)。要构造的数量钱是 N (1<= N<=10,000)。

第一行: 二个整数,V 和 N 。

第二行: 可用的货币的面值 。

输出格式:

输出格式:

单独的一行包含那个可能的用这v种硬币凑足n单位货币的方案数。

输入输出样例

输入样例#1: 复制

3 10
1 2 5
输出样例#1: 复制

10

说明

翻译来自NOCOW

USACO 2.3

求方案数类型完全背包

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int maxn = ;
// name*******************************
ll v,n;
ll a[maxn];
//int dp[maxn][maxn];
ll dp[maxn];
// function****************************** //***************************************
int main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin>>v>>n;
For(i,,v)
{
cin>>a[i];
} //一维优化
dp[]=;
For(i,,v)
{
FFor(j,n,)
{
for(int k=; j-k*a[i]>=; k++)//注意这里k要从1开始,从0开始的话就会重复
{
dp[j]+=dp[j-a[i]*k];
}
}
} cout<<dp[n]; //二维未优化
// For(i,0,v)dp[i][0]=1;
// For(i,1,v)
// {
// For(j,1,n)
// {
// for(int k=0; j-k*a[i]>=0; k++)
// {
// dp[i][j]+=dp[i-1][j-a[i]*k];
// cout<<"i:"<<i<<" j:"<<j<<" k:"<<k<<" dp:"<<dp[i][j]<<endl;
// }
// }
// }
// cout<<dp[v][n]; return ;
}

P1474 货币系统 Money Systems的更多相关文章

  1. 洛谷P1474 货币系统 Money Systems

    P1474 货币系统 Money Systems 250通过 553提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 母牛们不但创 ...

  2. 洛谷 P1474 货币系统 Money Systems

    P1474 货币系统 Money Systems !! 不是noip2018的那道题. 简单的多重背包的变式. #include <iostream> #include <cstdi ...

  3. 洛谷 P1474 货币系统 Money Systems 题解

    P1474 货币系统 Money Systems 题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1 ...

  4. 洛谷 P1474 货币系统 Money Systems(经典)【完全背包】+【恰好装满的最大方案数量】

    题目链接:https://www.luogu.org/problemnew/show/P1474 题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对 ...

  5. P1474 货币系统 Money Systems(完全背包)(大水题)

    题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

  6. 【洛谷】P1474 货币系统 Money Systems(背包dp)

    题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

  7. P1474 货币系统 Money Systems(完全背包求填充方案数)

    题目链接:https://www.luogu.org/problemnew/show/1474 题目大意:有V种货币,求用V种货币凑出面值N有多少种方案. 解题思路:就是完全背包问题,只是将求最大价值 ...

  8. 洛谷P1474 [USACO 2.3]货币系统 Money Systems [2017年4月计划 动态规划04]

    P1474 货币系统 Money Systems 题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1 ...

  9. 背包问题的方案总数 P1474 货币系统

    背包问题的方案总数 对于一个给定了背包容量.物品费用.物品间相互关系(分组.依赖等)的背包问题,除了再给定每个物品的价值后求可得到的最大价值外,还可以得到装满背包或将背包装至某一指定容量的方案总数. ...

随机推荐

  1. package.json中devDependencies与dependencies的区别

    前言:之前一直不懂既然都是项目的依赖,为什么要分成两个部分,devDependencies和dependencies,有什么区别? 安装方式 我们在通过npm安装插件或库时,有三种方式: npm in ...

  2. 使用catsup快速建立个人博客

    一.安装 time: 2016-01-2 20:30 1.使用pip安装catsup:(sudo) pip install catsup 从旧版本升级到新版本:(sudo) pip install c ...

  3. Intel超低功耗CPU的一些信息

    2015年底: Intel Braswell是专门针对超低功耗移动和桌面平台的一个家族,现有赛扬N3000/N3050/N3150.奔腾N3700四款型号,其中N300的热设计功耗只有区区4W,其他三 ...

  4. okhttp3带cookie请求

    Request经常都要携带Cookie,上面说过request创建时可以通过header设置参数,Cookie也是参数之一.就像下面这样: Request request = new Request. ...

  5. linux 用户管理命令useradd、passwd、who、whoami、id、w及创建用户默认值文件

    useradd /usr/sbin/useradd执行权限:rootuseradd [选项] 用户名-u UID:手工指定用户的UID号-d 家目录:手工指定用户的家目录-c 用户说明:手工指定用户的 ...

  6. 安装nvm之后node不可用,“node”不是内部或外部命令,也不是可运行的程序或批处理文件(ng)

    安装nvm: 1.下载nvm压缩包地址:https://github.com/coreybutler/nvm-windows/releases 2.下载后解压在目标文件夹中,我这里是H:\applic ...

  7. Android sync adapter初体验之为什么官方文档上的代码不能work

    回答:因为其实可以work sync adapter就是google推出的一个同步框架,把各种同步操作放在一起智能管理比较省电之类的.对我而言最具体的好处反正就是,不用自己写代码了,用框架就可以了.目 ...

  8. scrapy简单入门及选择器(xpath\css)

    简介 scrapy被认为是比较简单的爬虫框架,资料比较齐全,网上也有很多教程.官网上介绍了它的四种安装方法,PyPI.Conda.APT.Source,我们只介绍最简单的安装方法. 安装 Window ...

  9. 【Redis】命令学习笔记——哈希(hash)(15个超全字典版)

    本篇基于redis 4.0.11版本,学习哈希(hash)相关命令. hash 是一个string类型的field和value的映射表,特别适合用于存储对象. 序号 命令 描述 实例 返回 HSET ...

  10. Linux ss命令详解

    ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.ss的优势在于它能够显示更多更详细的有关TCP和连接状态的信息 ...