P1586 四方定理
题目描述
四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 。给定的正整数nn ,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案。
输入输出格式
输入格式:
第一行为正整数tt (t\le 100t≤100 ),接下来tt 行,每行一个正整数nn (n\le 32768n≤32768 )。
输出格式:
对于每个正整数nn ,输出方案总数。
输入输出样例
1
2003
48
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int maxn = ;
// name*******************************
int f[][];
int t;
int n=;
int ans=;
// function****************************** //***************************************
int main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
me(f,);
f[][]=;
for(int i=; i*i<=n; i++)
for(int j=i*i; j<=n; j++)
for(int k=; k<=; k++)
f[j][k]+=f[j-i*i][k-]; cin>>t;
while(t--)
{
ans=;
cin>>n;
For(i,,)
ans+=f[n][i];
cout<<ans<<endl;
}
return ;
}
P1586 四方定理的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 四方定理(递归) --java
四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...
- java实现第二届蓝桥杯四方定理
四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...
- 【DP】【P1586】四方定理
传送门 Description Input 第一行为一个整数T代表数据组数,之后T行每行一个数n代表要被分解的数 Output 对于每个n输出一行,为方案个数 Sample Input Sample ...
随机推荐
- charles 抓包 https 证书
1. 概述 环境:这里是windows8 和 android (参考了ios环境的博客) 手机app点击发出http及https的请求,之前抓包都有请求的相关内容展示,这次没有,原来之前的一直抓的是h ...
- 倒计时5,4,3,2,1css实现(count down from 5 to 1 using css)
//count down from 5 to 1, a useful animation. show the code to you: <!DOCTYPE html> <html ...
- web页面超时自动退出方法
思路: 使用 mousemover 事件来监测是否有用户操作页面,写一个定时器间隔特定时间检测是否长时间未操作页面,如果是,退出: 具体时间代码如下(js):var lastTime = new Da ...
- Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...
- Android CheckBox大小调整
关键是: android:scaleX="0.5" <CheckBox android:id="@+id/checkBox1" android:layou ...
- java变量常量
1. java 变量遵循先声明,再赋值,后使用的原则. 一个变量可以只声明,不赋值,没有问题(只是这个变量没有实际意义,但完全没有问题).但如果想要使用它,那么就一定要给它赋值,而大多数时候我们又不知 ...
- 软工读书笔记 week 8 —— 《疯狂的程序员》
这次接着上一次的进度继续阅读,并将其中感悟较深的几点记录如下. 程序员是一个幕后工作者 书中绝影给医院写软件,而医生(用户)只是评价这个软件好不好用,而不会去评价写这个软件的程序员优不优秀. ...
- Hive的介绍及安装
简介 Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件 映射为一张数据库表,并提供类 SQL 查询功能. 本质是将 SQL 转换为 MapReduce 程序. Hive组件 ...
- springMVC入门-02
本节会在上节基础上讨论springMVC如何传值的问题. 在添加dispatcherServlet之后,拦截器会将url中的参数拦截下来,使之可以在controller中使用.以下代码就是在前台输入u ...
- jQuery 中bind(),live(),delegate(),on() 区别
on()来改写通过 .bind(), .live(), .delegate()所注册的事件 /* The jQuery .bind(), .live(), and .delegate() method ...