Deep compression code
https://github.com/songhan/SqueezeNet-Deep-Compression
import sys
import os
import numpy as np
import pickle help_ = '''
Usage:
decode.py <net.prototxt> <net.binary> <target.caffemodel>
Set variable CAFFE_ROOT as root of caffe before run this demo!
''' if len(sys.argv) != 4:
print help_
sys.exit()
else:
prototxt = sys.argv[1]
net_bin = sys.argv[2]
target = sys.argv[3] # os.system("cd $CAFFE_ROOT")
caffe_root = os.environ["CAFFE_ROOT"]
os.chdir(caffe_root)
print caffe_root
sys.path.insert(0, caffe_root + 'python')
import caffe caffe.set_mode_cpu()
net = caffe.Net(prototxt, caffe.TEST)
layers = filter(lambda x:'conv' in x or 'fc' in x or 'ip' in x, net.params.keys()) fin = open(net_bin, 'rb') def binary_to_net(weights, spm_stream, ind_stream, codebook, num_nz):
bits = np.log2(codebook.size)
if bits == 4:
slots = 2
elif bits == 8:
slots = 1
else:
print "Not impemented,", bits
sys.exit()
code = np.zeros(weights.size, np.uint8) # Recover from binary stream
spm = np.zeros(num_nz, np.uint8)
ind = np.zeros(num_nz, np.uint8)
if slots == 2:
spm[np.arange(0, num_nz, 2)] = spm_stream % (2**4)
spm[np.arange(1, num_nz, 2)] = spm_stream / (2**4)
else:
spm = spm_stream
ind[np.arange(0, num_nz, 2)] = ind_stream% (2**4)
ind[np.arange(1, num_nz, 2)] = ind_stream/ (2**4) # Recover the matrix
ind = np.cumsum(ind+1)-1
code[ind] = spm
data = np.reshape(codebook[code], weights.shape)
np.copyto(weights, data) nz_num = np.fromfile(fin, dtype = np.uint32, count = len(layers))
for idx, layer in enumerate(layers):
print "Reconstruct layer", layer
print "Total Non-zero number:", nz_num[idx]
#eg . Reconstruct layer conv1
#Total Non-zero number: 13902
if 'conv' in layer:
bits = 8 #卷积层使用8bit量化,全连接使用4bit
else:
bits = 4
codebook_size = 2 ** bits #所有码字的总数
codebook = np.fromfile(fin, dtype = np.float32, count = codebook_size)
bias = np.fromfile(fin, dtype = np.float32, count = net.params[layer][1].data.size)
np.copyto(net.params[layer][1].data, bias) #把fin里的值拷贝进去,原先net.params[layer][1].data全部都是0 spm_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / (8/bits) + 1)
ind_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / 2+1) binary_to_net(net.params[layer][0].data, spm_stream, ind_stream, codebook, nz_num[idx]) net.save(target)
Deep compression code的更多相关文章
- [综述]Deep Compression/Acceleration深度压缩/加速/量化
Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...
- DEEP COMPRESSION小记
2016ICLR最佳论文 Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization A ...
- Deep Compression Compressing Deep Neural Networks With Pruning, Trained QuantizationAnd Huffman Coding
转载请注明出处: http://www.cnblogs.com/sysuzyq/p/6200613.html by 少侠阿朱
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- A Full Hardware Guide to Deep Learning
A Full Hardware Guide to Deep Learning Deep Learning is very computationally intensive, so you will ...
- 网络压缩论文集(network compression)
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 深度学习网络压缩模型方法总结(model compression)
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level ac ...
- (zhuan) Where can I start with Deep Learning?
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...
随机推荐
- 使用Device IO Control 讀寫 USB Mass Storage
http://www.ezblog.idv.tw/Download/USBStorage.rar 這是一個不透過檔案系統,去讀寫USB Mass Storage 任何位置(包含FAT)的方式 首先需安 ...
- PyQt5 各种菜单实现
# -*- coding: utf-8 -*- # Created by PCITZDF on 2018/4/8 15:36. # FileName: menuandtools.py import s ...
- [asp.net web api] HttpStatusCode的使用
摘要 在开放api的时,我们需要返回不同的状态给调用方,以告诉它们当前请求的结果,是成功了还是失败了.当然这种给调用方的反馈有很多种做法,这里就说是web api内置的对Http状态码.http状态码 ...
- C#程序集系列11,全局程序集缓存
全局程序集缓存(GAC:Global Assembly Cache)用来存放可能被多次使用的强名称程序集.当主程序需要加载程序集的时候,优先选择到全局程序集缓存中去找寻需要的程序集. 为什么需要全局程 ...
- Oracle 快速插入1000万条数据的实现方式
1.使用dual配合connect by level create table BigTable as select rownum as id from dual connect by level & ...
- Guava 源码分析之 Beta, GwtCompatible, GwtIncompatible, Charset, HashCode
com.google.common.annotations.Beta /** * 表明一个公用API的未来版本是受不兼容变更或删除限制的 * 拥有这个注释标志的API不受任何兼容性保证 * */ @R ...
- 【BZOJ】【1941】【SDOI2010】Hide and Seek
KD-Tree 一开始看错题了
- 【XJOI】【NOI考前模拟赛7】
DP+卡常数+高精度/ 计算几何+二分+判区间交/ 凸包 首先感谢徐老师的慷慨,让蒟蒻有幸膜拜了学军的神题.祝NOI2015圆满成功 同时膜拜碾压了蒟蒻的众神QAQ 填填填 我的DP比较逗比……( ...
- 【BZOJ】【1251】序列终结者
Splay 还是splay序列维护,这题我WA了的原因是:在Push_up的时候,当前子树的max我是直接取的L.R和v[x]的最大值,但是如果没有左/右儿子,默认是会访问0号结点的mx值,而这个值没 ...
- JBoss 系列一 O O:Maven jBPM 6 集成演示样例
概述 jBPM 6 中底层架构基于 Maven,所以我们能够非常easy的进行 Maven jBPM 6 集成演示样例,本文分三个部分: 基本原理介绍 Maven jBPM 6 集成 jBPM 6 中 ...