1、计数排序

# -*- coding: utf-8 -*-
# @Time : 2018/07/31 0031 11:32
# @Author : Venicid def count_sort(li, max_num):
count = [0 for i in range(max_num + 1)]
for num in li:
count[num] += 1
i = 0
for num, m in enumerate(count):
for j in range(m):
li[i] = num
i += 1 import random
data = []
for i in range(100000):
data.append(random.randint(0,100)) count_sort(data, 100)
print(data)

计数排序这么快,为什么不用计数排序呢?因为他是有限制的,你要知道列表中的最大数

如果一下来了一个很大的数,比如10000,那么占的空间就的这么大,

计数排序占用的空间和列表的范围有关系

解决这种问题的方法,可以用桶排序,都放进去可以在进行其他的排序。比如插入排序。

2、TOP10榜单:topk

  (1)方式1:思路:插入排序  O(kn)

  

# -*- coding: utf-8 -*-
# @Time : 2018/07/31 0031 11:59
# @Author : Venicid def insert(li, i):
"""一次insert"""
tmp = li[i]
j = i - 1
while j >= 0 and li[j] > tmp:
li[j + 1] = li[j]
j = j - 1
li[j + 1] = tmp def insert_sort(li):
for i in range(1, len(li)): # 从第二个位置,即下标为1的元素开始向前插入
insert(li,i) def topk(li, k):
top = li[0:k + 1] # top10, 多开辟一个存放,新进来的数据
insert_sort(top)
for i in range(k + 1, len(li)):
top[k] = li[i]
insert(top, k)
return top[:-1] # 去掉最后一个 import random
data = list(range(20))
topk_ = random.shuffle(data)
print(data) print(topk(data, 10))

  (2)方式2:堆的应用:nlogk

          

def sift(data, low, high):
"""调整"""
i = low # 父亲的位置
j = 2 * i + 1 # 孩子的位置
tmp = data[i] # 原省长退休
while j <= high: # 孩子在堆里
if j + 1 <= high and data[j] < data[j + 1]: # if右孩子存在且右孩子更大
# if j + 1 <= high and data[j] > data[j + 1]: # if右孩子存在且右孩子更大
j += 1
if data[j] > tmp: # 孩子比最高领导大
# if data[j] < tmp: # 孩子比最高领导大
data[i] = data[j] # 孩子上移一层
i = j # 孩子成为新父亲
j = 2 * i + 1 # 新孩子
else:
break
data[i] = tmp # 省长放到对应的位置上(村民/叶子节点) def topn(li, n):
heap = li[0:n]
# 建堆
for i in range(n // 2 - 1, -1, -1):
sift(heap, i, n - 1) # 遍历
for i in range(n, len(li)):
if li[i] < heap[0]:
# if li[i] > heap[0]:
heap[0] = li[i]
sift(heap, 0, n - 1)
for i in range(n - 1, -1, -1): # i指向堆的最后
heap[0], heap[i] = heap[i], heap[0] # 领导退休,刁民上位
sift(heap, 0, i - 1) # 调整出新领导
return heap import random data = list(range(20))
topk_ = random.shuffle(data)
print(data) print(topn(data, 10))

3、heapq实现堆排序

python官方文档

https://docs.python.org/3/library/index.html

# -*- coding: utf-8 -*-
# @Time : 2018/07/31 0031 15:07
# @Author : Venicid import heapq
import random h = []
data = list(range(10000))
random.shuffle(data)
# heapq.heappush(h,1) # [1] # 生成小栈堆
for num in data:
heapq.heappush(h, num)
print(h) #[0, 1, 2, 4, 3, 5, 7, 8, 6, 17, # 出数
for i in range(len(h)):
print(heapq.heappop(h)) # top最大 top最小的
print(heapq.nsmallest(10, data))
print(heapq.nlargest(10, data))

3、计数排序,电影top100的更多相关文章

  1. requests+正则表达式提取猫眼电影top100

    #requests+正则表达式提取猫眼电影top100 import requests import re import json from requests.exceptions import Re ...

  2. PYTHON 爬虫笔记八:利用Requests+正则表达式爬取猫眼电影top100(实战项目一)

    利用Requests+正则表达式爬取猫眼电影top100 目标站点分析 流程框架 爬虫实战 使用requests库获取top100首页: import requests def get_one_pag ...

  3. python 爬取猫眼电影top100数据

    最近有爬虫相关的需求,所以上B站找了个视频(链接在文末)看了一下,做了一个小程序出来,大体上没有修改,只是在最后的存储上,由txt换成了excel. 简要需求:爬虫爬取 猫眼电影TOP100榜单 数据 ...

  4. 计数排序(counting-sort)——算法导论(9)

    1. 比较排序算法的下界 (1) 比较排序     到目前为止,我们已经介绍了几种能在O(nlgn)时间内排序n个数的算法:归并排序和堆排序达到了最坏情况下的上界:快速排序在平均情况下达到该上界.   ...

  5. 计数排序和桶排序(Java实现)

    目录 比较和非比较的区别 计数排序 计数排序适用数据范围 过程分析 桶排序 网络流传桶排序算法勘误 桶排序适用数据范围 过程分析 比较和非比较的区别 常见的快速排序.归并排序.堆排序.冒泡排序等属于比 ...

  6. CF 375B Maximum Submatrix 2[预处理 计数排序]

    B. Maximum Submatrix 2 time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  7. 计数排序-java

    今天看了一本书,书里有道题,题目很常见,排序,明了点说: 需求:输入:最多有n个正整数,每个数都小于n, n为107 ,没有重复的整数 输出:按升序排列 思路:假设有一组集合 {1,3,5,6,11, ...

  8. 计数排序 + 线段树优化 --- Codeforces 558E : A Simple Task

    E. A Simple Task Problem's Link: http://codeforces.com/problemset/problem/558/E Mean: 给定一个字符串,有q次操作, ...

  9. 计数排序算法——时间复杂度O(n+k)

    计数排序 计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出.它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于 ...

随机推荐

  1. [翻译] USING GIT IN XCODE [6] 在XCODE中使用GIT[6]

    USING GIT IN XCODE KEEPING IN SYNC WITH REMOTE REPOSITORIES As you make changes in your local workin ...

  2. elastic search报错——“failed to obtain node locks”

    启动时报错信息: 这里写图片描述 寻找主要信息:failed to obtain node locks这里写图片描述简单理解为:绑定节点失败!!! 百度后,好多人同样遇到了这个问题,导致的原因可能是因 ...

  3. Python学习---IO的异步[tornado模块]

    tornado是一个异步非阻塞的WEB框架.它的异步非阻塞实际上就是用事件循环写的. 主要体现在2点: 1. 作为webserver可以接收请求,同时支持异步处理请求.Django只能处理完成上一个请 ...

  4. spring4声明式事务--01注解方式

    1.在spring配置文件中引入 tx 命名空间 xmlns:tx="http://www.springframework.org/schema/tx" 2.配置事务管理器 < ...

  5. 使用concurrent.futures模块并发,实现进程池、线程池

    Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码 从Python3.2开始,标准库为我们提供了concurrent.futures模 ...

  6. mkdirp——递归创建目录及其子目录

    如果要创建目录A并创建目录A的子目录B,没有用-p参数的情况下mkdir会逐个创建目录(mkdir A; mkdir A/B); 加上参数-p就可以直接创建2个目录mkdir -p A/B( 如果目录 ...

  7. arcgis 10.1 导入数据到oracle 发布地图服务

    机器配置说明 数据库服务器 系统:linux 软件:oracle 11G 64位 Arcgis server服务器 系统:win7 专业版 软件:arcgis server 10.1.win64_11 ...

  8. juquery去除字符串前后的空格

    1.  去掉字符串前后所有空格: 代码如下: function Trim(str) { return str.replace(/(^\s*)|(\s*$)/g, ""); }

  9. (十一)T检验-第二部分

    了解什么是有效大小,尝试一个单一样本t检验的完整示例. 效应量 调查研究的一个重要方面是效应量,在实验性研究中或存在处理变量的研究中,效应量是指处理效应的大小,意思很直观: 在非实验性研究中,效应量是 ...

  10. Day12 Java异常处理与程序调试

    什么是异常? 不正常的,会影响程序的正常执行流程. 例如下面的程序 public static void main(String[] args) { TestDemo1 t = new TestDem ...