1、互斥锁(排他锁)

  (1)不加锁的情况下

  并发控制问题:多个事务并发执行,可能产生操作冲突,出现下面的3种情况

  1. 丢失修改错误
  2. 不能重复读错误
  3. 读脏数据错误
# mutex
from threading import Thread
import time n = 100 def task():
global n
temp = n
time.sleep(0.1)
n = temp - 1
print(n) if __name__ == '__main__':
t_l = []
for i in range(100):
t = Thread(target=task)
t_l.append(t)
t.start() for t in t_l:
t.join() print('主done', n)

    

from threading import Thread,Lock
import os,time
def work():
global n
lock.acquire()
temp=n
time.sleep(0.1)
n=temp-1
lock.release()
if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join() print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全,不加锁则结果可能为99

  (2)、添加互斥锁(排他锁)

锁:  排它锁(可以修改数据)
共享锁(只可以读数据)

  

2、GIL全局解释器锁

参考博客:http://www.cnblogs.com/venicid/p/7975892.html

GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。

可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。

  

在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问

  

1、所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启三个线程然后target都指向该代码,能访问到意味着就是可以执行。 2、所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。

3、GIL与Lock

GIL 与Lock是两把锁,保护的数据不一样,
前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),
后者是保护用户自己开发的应用程序的数据

  

1、100个线程去抢GIL锁,即抢执行权限
2、肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3、极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
4、直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程

  

    

4、GIL与多线程

要解决这个问题,我们需要在几个点上达成一致:

1、cpu到底是用来做计算的,还是用来做I/O的?

2、多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能

3、每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处

结论:

1、对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用
2、当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,
所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地

  

5、多线程性能测试

计算密集型、io密集型

  • 如果并发的多个任务是计算密集型:多进程效率高
# 计算密集型:多进程执行效率高

from multiprocessing import Process
from threading import Thread
import time
import os def task():
print('子 is running')
ret = 0
for i in range(10000000):
ret *= i print('子 is done') if __name__ == '__main__':
print(os.cpu_count()) # 查看电脑cup内核数量:本机为4核
start_time = time.time() # 开启四个进程
p_list = []
for i in range(4):    
p = Process(target=task) # 耗时3.21s
# p = Thread(target=task) 耗时5.38秒
p_list.append(p)
p.start() # 等待4个进程执行完成
for p in p_list:
p.join() end_time = time.time()
print('主done:<%s>' % (end_time-start_time))

  • 如果并发的多个任务是I/O密集型:多线程效率高
# io密集型:多线程执行效率高

from multiprocessing import Process
from threading import Thread
import time
import os def task():
print('子 is running')
time.sleep(2)
print('子 is done') if __name__ == '__main__':
print(os.cpu_count()) # 查看电脑cup内核数量:本机为4核
start_time = time.time() # 开启400个进程
p_list = []
for i in range(400):
p = Process(target=task) # 耗时56s,大部分时间浪费在创建进程上
# p = Thread(target=task) # 耗时2.15秒
p_list.append(p)
p.start() for p in p_list:
p.join() end_time = time.time()
print('主done:<%s>' % (end_time-start_time))

6、死锁

from  threading import Thread, Lock
import time lockA = Lock()
lockB = Lock() class Mythread(Thread): def run(self):
self.task_a()
self.task_b() def task_a(self):
lockA.acquire()
print('%s 拿到A锁1' % self.name) lockB.acquire()
print('%s 拿到B锁1' % self.name)
lockB.release() lockA.release() def task_b(self):
lockB.acquire()
print('%s 拿到B锁' % self.name) lockA.acquire()
print('%s 拿到A锁' % self.name)
lockA.release() lockB.release() if __name__ == '__main__':
for i in range(10):
t = Mythread()
t.start()

7、递归锁

#一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

  

from threading import Thread, RLock
import time lockA = lockB = RLock() # 递归锁
# 递归锁可以连续acquire多次,每acquire一次计数器+1,只有计数器为0时,才能被抢到 class Mythread(Thread): def run(self):
self.task_a()
self.task_b() def task_a(self):
lockA.acquire()
print('%s 拿到A锁1' % self.name) lockB.acquire()
print('%s 拿到B锁1' % self.name)
lockB.release() lockA.release() def task_b(self):
lockB.acquire()
print('%s 拿到B锁' % self.name) lockA.acquire()
print('%s 拿到A锁' % self.name)
lockA.release() lockB.release() if __name__ == '__main__':
for i in range(10):
t = Mythread()
t.start()

8、信号量

6-[多线程]-互斥锁、GIL、死锁、递归锁、信号量的更多相关文章

  1. day 7-6 GIL,死锁,递归锁与信号量,Event,queue,

    摘要: 1.死锁与递归锁 2.信号量 3.Event 4.Timer 5.GIL 6.Queue 7.什么时候该用多线程和多进程 一. 死锁与递归锁 所谓死锁: 是指两个或两个以上的进程或线程在执行过 ...

  2. python并发编程-多线程实现服务端并发-GIL全局解释器锁-验证python多线程是否有用-死锁-递归锁-信号量-Event事件-线程结合队列-03

    目录 结合多线程实现服务端并发(不用socketserver模块) 服务端代码 客户端代码 CIL全局解释器锁****** 可能被问到的两个判断 与普通互斥锁的区别 验证python的多线程是否有用需 ...

  3. python 线程(创建2种方式,锁,死锁,递归锁,GIL锁,守护进程)

    ###############总结############ 线程创建的2种方式(重点) 进程:资源分配单位    线程:cpu执行单位(实体) 线程的创建和销毁的开销特别小 线程之间资源共享,是同一个 ...

  4. 【python】-- GIL锁、线程锁(互斥锁)、递归锁(RLock)

    GIL锁 计算机有4核,代表着同一时间,可以干4个任务.如果单核cpu的话,我启动10个线程,我看上去也是并发的,因为是执行了上下文的切换,让看上去是并发的.但是单核永远肯定时串行的,它肯定是串行的, ...

  5. 并发、并行、同步、异步、全局解释锁GIL、同步锁Lock、死锁、递归锁、同步对象/条件、信号量、队列、生产者消费者、多进程模块、进程的调用、Process类、

    并发:是指系统具有处理多个任务/动作的能力. 并行:是指系统具有同时处理多个任务/动作的能力. 并行是并发的子集. 同步:当进程执行到一个IO(等待外部数据)的时候. 异步:当进程执行到一个IO不等到 ...

  6. python-GIL、死锁递归锁及线程补充

    一.GIL介绍 GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁.它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,G ...

  7. 并发编程8 线程的创建&验证线程之间数据共享&守护线程&线程进程效率对比&锁(死锁/递归锁)

    1.线程理论以及线程的两种创建方法 2.线程之间是数据共享的与join方法 3.多线程和多进程的效率对比 4.数据共享的补充线程开启太快 5.线程锁 互斥锁 同步锁 6.死锁现象和递归锁 7.守护线程 ...

  8. day33 线程的创建 验证线程之间共享数据 守护线程 线程进程效率对比 锁 死锁 递归锁

    今日内容: 1.线程理论 2.锁: 牺牲了效率,保证了数据的安全(重点) 3.守护线程 4.GIL锁:(重点) 5.计算密集型和IO密集型 6.信号量,事件(了解) 7.补充. 子进程中不能input ...

  9. 线程锁(互斥锁Mutex)及递归锁

    一.线程锁(互斥锁) 在一个程序内,主进程可以启动很多个线程,这些线程都可以访问主进程的内存空间,在Python中虽然有了GIL,同一时间只有一个线程在运行,可是这些线程的调度都归系统,操作系统有自身 ...

  10. 并发编程---死锁||递归锁---信号量---Event事件---定时器

    死锁 互斥锁:Lock(),互斥锁只能acquire一次 递归锁:  RLock(),可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到acquire # 死锁 f ...

随机推荐

  1. DPM恢复点和保持期、常见问题排除指南

    “恢复点计划”确定应为该保护组创建多少个恢复点. 对于文件保护,选择希望创建恢复点的日期和时间. 对于支持增量备份的应用程序数据保护,同步频率决定了恢复点计划. 对于不支持增量备份的应用程序数据保护, ...

  2. 工具类-vim在shell中卡死的情况

    time:2015/11/35 在xshell下面使用vim编辑,有时候会出现突然卡死的情况.但是如果重新开一个终端的话,打开文件又是一大堆问题,今天又碰到了,搜了一下就找到一个帮助了[1] 原因:按 ...

  3. Build path entry is missing: config 引起的 The project: configwhich is referenced by the classpath, does not exist.

    运行Junit的时候报错, The project: XXXX which is referenced by the classpath, does not exist. 在Java Build Pa ...

  4. python字典去重脚本

    #!/usr/bin/env python # encoding: utf-8 #字典去重小代码 import sys import os import platform try: pass exce ...

  5. 内置数据结构(list)

    列表.元组.字符串.字典和集合是python内置的数据结构,也可以叫内置容器.前3个是线性结构,线性结构可以切片操作.解包和封包操作. dir()方法可以查看对象拥有哪些属性和方法. help()方法 ...

  6. September 23rd 2017 Week 38th Saturday

    Lonely people will always remember his life occurred in each person. 寂寞的人总是会用心记住他生命中出现过的每个人. If you ...

  7. November 5th Week 45th Saturday 2016

    The longest day has an end. 最难过的日子也会有尽头. No, no, no, I can't see the end of such days, of course, if ...

  8. rss工具及资源

    使用的工具:reeder 资源: https://calayer.com https://github.com/SwiftOldDriver/iOS-Weekly/releases https://w ...

  9. log4j配置不生效

    可能原因是打包时候log4j.properties没有在classpath下面或者是加载时候被其他第三方jar包中的log4j.properties文件覆盖掉了,可以使用如下命令进行查看log4j具体 ...

  10. 集合之HashMap

    HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在.在HashMap中,key-value总是会当做一个整体来处理,系统会根据 ...