马尔可夫毯(Markov blanket)
马尔可夫毯(Markov blanket)
马尔科夫毯,是满足如下特性的一个最小特征子集:一个特征在其马尔科夫毯条件下,与特征域中所有其他特征条件独立。设特征T的马尔科夫毯为MB(T),则上述可表示为:
P(T | MB(T)) = P(T | Y, MB(T))
其中Y为特征域中的所有非马尔科夫毯结点。这是马尔科夫毯的最直接的定义。关于某一特征的马尔科夫毯在贝叶斯网络中的表现形式是该特征(即该结点)的父结点、子结点以及子结点的父结点。
http://blog.csdn.net/memory513773348/article/details/16973807
马尔可夫毯(Markov blanket)的更多相关文章
- 马尔科夫毯(Markov Blanket)
最优特征子集:选出特征的子集,能够比较准确的代表原来的特征.马尔科夫毯(MB)是贝叶斯网络(BN)的最有特征子集. 推测贝叶斯网络的网络结构是NP问题.贝叶斯网络中一个节点T的马尔科夫毯是其父节点,子 ...
- 马尔可夫毯(Markov Blanket)
马尔可夫毯(Markov Blanket) 最近接触到马尔可夫毯(MarkovBlanket)这个概念,发现网上资料不多,通俗易懂的解释甚少,查了一些资料后,决定写一个总结. 提到马尔可夫毯,就会有一 ...
- 从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)
1.参考资料: 博客园 - 刘建平随笔:https://www.cnblogs.com/pinard/p/6945257.html 哔站up主 - 白手起家的百万富翁:https://www.bili ...
- 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...
- PGM:无向图模型:马尔可夫网
http://blog.csdn.net/pipisorry/article/details/52489321 马尔可夫网 马尔可夫网在计算机视觉领域通常称为马尔可夫随机场(Markov random ...
- 强化学习(二)马尔科夫决策过程(MDP)
在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策 ...
- 【转载】 强化学习(二)马尔科夫决策过程(MDP)
原文地址: https://www.cnblogs.com/pinard/p/9426283.html ------------------------------------------------ ...
- 【强化学习】MOVE37-Introduction(导论)/马尔科夫链/马尔科夫决策过程
写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位 ...
- 白话马尔科夫链蒙特卡罗方法(MCMC)
前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起 ...
随机推荐
- shell_script2
一.函数 1.简介 Shell函数类似于Shell脚本,里面存放了一系列的指令 不过,Shell的函数存在于内存,而不是硬盘文件,所以速度很快 另外,Shell还能对函数进行预处理,所以函数的启动比脚 ...
- LeetCode题解之Rotate Array
1.题目描述 2.代码 void rotate(vector<int>& nums, int k) { ) return ; && (k / nums.size() ...
- Oracle EBS APP-FND-02938 多组织例程初始化产品报错
Oralce EBS R12中引入了MOAC的控制,所有多OU的表对象都添加了数据库VPD的控制策略,需要访问这些对象中的数据,首先需要进行多组织环境的初始化,但是如果客户化的应用中也需要具备多OU的 ...
- UNIX高级环境编程(2)FIle I/O - 原子操作、共享文件描述符和I/O控制函数
引言: 本篇通过对open函数的讨论,引入原子操作,多进程通信(共享文件描述符)和内核相关的数据结构. 还会讨论集中常见的文件IO控制函数,包括: dup和dup2 sync,fsync和fdatas ...
- Hadoop HBase概念学习系列之HBase里的存储数据流程(二十三)
这个,很简单,但凡是略懂大数据的,就很清楚,不多说,直接上图.
- php 实现hash表
hash表又称散列表,通过把关键字key经过hash函数映射到hash表中某个位置获取记录. 存放记录的数组又称为hash表,映射函数称为hash函数 下面是php中实现hash表的方法 <?p ...
- Django在admin模块中显示auto_now_add=True或auto_now=True的时间类型列
转载自: http://www.tuicool.com/articles/ZryE7f 在Django如果model中的列定义了auto_now_add或auto_now属性,那么这种列不会在admi ...
- 随手练——HDU 5015 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...
- Sequelize-nodejs-12-Migrations
Migrations迁移 Just like you use Git / SVN to manage changes in your source code, you can use migratio ...
- 51 Nod 1107 斜率小于0的连线数量 (转换为归并求逆序数或者直接树状数组,超级详细题解!!!)
1107 斜率小于0的连线数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线 ...