UFLDL 教程学习笔记(四)
课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/
在之前的练习中,图片比较小,这节课的方法可以应用到更大的图像上。
Fully Connected Networks
在sparse autoencoder(后面会讲到)中,一种设计选择是将输入层与隐藏层fully connect,这种方式对图片小的情况下计算量还
可以接受,但对大图片来说变得不可接受。
Locally Connected Networks
一种简单的解决方式是隐藏层只连接一部分的输入层,即只对特定的输入产生反应。
Convolutions
自然图像有一种stationary的性质,即图像的某个部分的统计信息和该图像的其他部分是一致的,也就是说,在图像某个部分提取的特征可
以应用到图像的其他部分,并且可以在所有的位置上使用同样的特征(不太理解啊)。
更准确的说,我们可以在一副96*96图像上随机提取一个patch(比如8*8)的特征,我们可以将这个8*8的feature detector应用到这副图像的任何地方,
具体说就是,我们将学习到的8*8feature与大图像作convolve,因而在图像的每个位置上都得到一个不同的feature activation value
为了更好理解,给了一个具体的例子。假设已经学到了特征,来自于一个96*96图像上的一个8*8的patch,更近一步,假设这是由一个有100个隐藏单元的
autoencoder完成的。为了得到convolved features,对于96*96的每个8*8区域(参考课程中的动图)。
正式的说法是,给定一个r*c的大图xlarge,我们首先在一个小的a*b的pathces xsmall(从大图中采样得到)上训练一个sparse autoencoder,使及方程
得到k个特征,然后
下部分将要讨论如何pool这些特征,来得到更好的用于分类的特征。
UFLDL 教程学习笔记(四)的更多相关文章
- UFLDL 教程学习笔记(四)主成分分析
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(三)自编码与稀疏性
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(二)反向传导算法
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(一)神经网络
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(三)
教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...
- UFLDL 教程学习笔记(六)主成分分析
教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...
- UFLDL 教程学习笔记(一)
ufdl的新教程,从基础学起.第一节讲的是线性回归.主要目的是熟悉目标函数,计算梯度和优化. 按着教程写完代码后,总是编译出错,一查是mex的原因,实在不想整了. 这位博主用的是向量,比较简洁:htt ...
- UFLDL 教程学习笔记(二)
课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ 这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归 ...
- UFLDL深度学习笔记 (四)用于分类的深度网络
UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使 ...
随机推荐
- 解决Android SDK Manager更新时出现问题
使用SDK Manager更新时出现问题Failed to fetch URL https://dl-ssl.google.com/android/repository/repository-6.xm ...
- bzoj 4568: [Scoi2016]幸运数字
4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 848 Solved: 336[Submit][Status ...
- 关于表单中Readonly和Disabled
Readonly和Disabled是用在表单中的两个属性,它们都能够做到使用户不能够更改表单域中的内容.但是它们之间有着微小的差别,总结如下: Readonly只针对input(text / pass ...
- bootstrap.yml与application.yml的区别
说明:其实yml和properties文件是一样的原理,主要是说明application和bootstrap的加载顺序.且一个项目上要么yml或者properties,二选一的存在. Bootstra ...
- go语言从零学起(一) -- 文档教程篇
先记录一下自己学go语言的出发点 作为一个phper,精通一门底层语言一直是努力的目标. 相对于c,c++,go语言不需要过多的关注指针,内存释放,一两行代码就能跑起一个server服务,简直不要太简 ...
- Shell记录-Shell脚本基础(三)
if...fi 语句的基本控制语句,它允许Shell有条件作出决定并执行语句. 语法 if [ expression ] then Statement(s) to be executed if exp ...
- Nginx基础配置指令
nginx.conf文件的结构 ... #全局块 events{ #events块 ... } http{ #http块 ... #http全局块 server{ #server块 ... #serv ...
- bzoj千题计划126:bzoj1038: [ZJOI2008]瞭望塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1038 本题可以使用三分法 将点按横坐标排好序后 对于任意相邻两个点连成的线段,瞭望塔的高度 是单峰函 ...
- sparse representation 与sparse coding 的区别的观点
@G_Auss: 一直觉得以稀疏为目标的无监督学习没有道理.稀疏表示是生物神经系统的一个特性,但它究竟只是神经系统完成任务的副产物,还是一个优化目标,没有相关理论,这里有推理漏洞.实际上,稀疏目标只能 ...
- JavaScript 时间与时间戳转换
一.获取yyyy-MM-dd hh:mm:ss 格式的时间 function getdate(timeStamp) { if (timeStamp) { var now = new Date(time ...