我是题面

题意还是很清晰,很容易理解

1e9范围明显不能暴力,除非你能把常数优化到\(\frac1 {10}\),但我实在想象不到用了这么多取模怎么把常数优化下去

我们可以把\(k\%i\)变成\(k-k/i*i\)(整除)

那么总的和也就从\(\sum_{i=1}^{n}k\%i\)变成了\(\sum_{i=1}^n k-k/i*i\),又可以转化为\(nk-\sum_{i=1}^n k/i*i\)

\(k/i\)的值只有有\(\sqrt k\)种,且相同的值都是连续出现的,所以我们可以直接利用等差数列求\(\sum_{i=1}^n k/i*i\)

下面放代码吧

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc getchar
using namespace std; inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}ll n,k,ans; int main(){
n=read();k=read();
for(int l=1,r;l<=n;l=r+1){
if(k/l)r=min(k/(k/l),n);
else r=n;
ans+=k/l*(r-l+1)*(l+r)/2;
}
ans=n*k-ans;
printf("%lld\n",ans);
return 0;
}

不要抄袭哦

P2261 [CQOI2007]余数求和的更多相关文章

  1. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  2. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  3. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  4. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  5. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  6. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  7. P2261 [CQOI2007]余数求和 (数论)

    题目链接:传送门 题目: 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod + k mod + k mod + … + k mod n的值,其中k mod i表示k ...

  8. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  9. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

  10. 【洛谷】P2261 [CQOI2007]余数求和

    题面?? 点我获得题面QAQ 我这个咕儿终于在csp初赛前夕开始学习数论了! 我是绝对不会承认之前不学数学是因为去年刚开始学OI的时候就跟yyq他们学莫比乌斯反演然后自闭的 分析 对于k mod i, ...

随机推荐

  1. Spring学习(十七)----- Spring自动代理创建者

    1. BeanNameAutoProxyCreator示例 在此之前,必须手动创建一个代理bean(ProxyFactryBean). <beans xmlns="http://www ...

  2. Bitcoin区块链攻击方式

    目录 重放攻击-- 非人为攻击 其他攻击 重放攻击-- 非人为攻击 重放攻击 Replay Attach 攻击者重复发送相同的数据库包到目的主机,用以欺骗系统 用支付宝付款信息重复项商家索取商品 比特 ...

  3. Jmeter介绍1

    要测试的响应字段: 响应文本:即响应的数据,比如json等文本 响应代码:http的响应代码,比如200,302,404这些 响应信息:http响应代码对应的响应信息,列如OK,Found Respo ...

  4. Docker创建容器

    容器是镜像的一个运行实例,是基于镜像运行的轻量级环境,是一个或者一组应用. 怎样创建容器?将容器所基于的镜像名称传入即可,Docker会从本地仓库中寻找该镜像,如果本地仓库没有,则会自动从远程仓库中拉 ...

  5. monkey测试入门1

    Monkey是一款通过命令行来对我们APP进行测试的工具,可以运行在模拟器里或真机上.它向系统发送伪随机的用户事件流,实现对正应用程序进行压力测试. 官方介绍 :https://developer.a ...

  6. [Unity] unity5.3 assetbundle打包及加载

    Unity5.3更新了assetbundle的打包和加载api,下面简单介绍使用方法及示例代码. 在Unity中选中一个prefab查看Inspector窗口,有两个位置可以进行assetbundle ...

  7. js数组知识点总结及经典笔试题

    1.判断数组 这是笔试里经常会出现的知识考察点,总结一下 (1)Array.isArray()方法判断 var a=[]; Array.isArray(a) //返回true var b='hello ...

  8. [C++]值传递和引用传递

    概念 在定义函数时函数括号中的变量名成为形式参数,简称形参或虚拟参数: 在主调函数中调用一个函数时,该函数括号中的参数名称为实际参数,简称实参,实参可以是常量.变量或表达式. 注意: C语言中实参和形 ...

  9. hadoop之定制自己的sort过程

    Key排序 1. 继承WritableComparator 在hadoop之Shuffle和Sort中,可以看到mapper的输出文件spill文件需要在内存中排序,并且在输入reducer之前,不同 ...

  10. spring-boot+swagger实现WebApi文档

    1.引用依赖包 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-s ...