注意到n很小,考虑枚举i。现在要求的是f(n,m)=Σφ(in) (i=1~m)。显然当n没有平方因子时,φ(in)=φ(i)·φ(n/gcd(i,n))·gcd(i,n)。利用φ*1=id又可得φ(i,n)=φ(i)·Σφ(n/d) (d|gcd(i,n))。改为枚举d就可以得到f(n,m)=Σφ(n/d)*f(d,m/d) (d|n),记忆化搜索求解。n有平方因子时可以发现只要把平方因子提出来最后再乘上就行了,除去平方因子的数可以线性筛得到。

  当n=1时无法继续递归,答案即为φ的前缀和,杜教筛即可。复杂度应该是O(n√m+m2/3)左右,不是很会证。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define P 1000000007
int n,m,prime[N<<],phi[N<<],p[N<<],ans=,cnt=;
bool flag[N<<];
map<int,int> f,g[N];
int getphi(int n)
{
if (n<(N<<)) return phi[n];
if (f[n]) return f[n];
int s=1ll*n*(n+)/%P;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
s=(s-1ll*(t-i+)*getphi(n/i)%P+P)%P;
i=t;
}
return f[n]=s;
}
int calc(int n,int m)
{
if (!m) return ;
if (n==) return getphi(m);
if (g[n][m]) return g[n][m];
int x=n,s=;n=p[n];
for (int i=;i*i<=n;i++)
if (n%i==)
{
s=(s+1ll*(getphi(n/i)-getphi(n/i-)+P)*calc(i,m/i)%P)%P;
if (i*i<n) s=(s+1ll*(getphi(i)-getphi(i-)+P)*calc(n/i,m/(n/i))%P)%P;
}
s=1ll*s*(x/n)%P;
return g[n][m]=s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3512.in","r",stdin);
freopen("bzoj3512.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
flag[]=,phi[]=,p[]=;
for (int i=;i<(N<<);i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-,p[i]=i;
for (int j=;j<=cnt&&prime[j]*i<(N<<);j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];p[prime[j]*i]=p[i];break;}
else phi[prime[j]*i]=phi[i]*(prime[j]-),p[prime[j]*i]=p[i]*prime[j];
}
}
for (int i=;i<(N<<);i++) phi[i]=(phi[i-]+phi[i])%P;
for (int i=;i<=n;i++)
ans=(ans+calc(i,m))%P;
cout<<ans;
return ;
}

BZOJ3512 DZY Loves Math IV(杜教筛+线性筛)的更多相关文章

  1. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

  2. 【bzoj3512】DZY Loves Math IV 杜教筛+记忆化搜索+欧拉函数

    Description 给定n,m,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(ij)\)模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅 ...

  3. BZOJ3512 DZY Loves Math IV

    解:这又是什么神仙毒瘤题...... 我直接把后面那个phi用phi * I = id反演一波,得到个式子,然后推不动了...... 实际上第一步我就大错特错了.考虑到n很小,我们有 然后计算S,我们 ...

  4. 【BZOJ3512】DZY Loves Math IV(杜教筛)

    [BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...

  5. bzoj 3512: DZY Loves Math IV【欧拉函数+莫比乌斯函数+杜教筛】

    参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk) ...

  6. ●BZOJ 3512 DZY Loves Math IV

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3512 题解: $$求ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\phi ...

  7. 【刷题】BZOJ 3512 DZY Loves Math IV

    Description 给定n,m,求 模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅一行答案. Sample Input 100000 1000000000 Sampl ...

  8. bzoj 3512: DZY Loves Math IV

    Description 给定n,m,求 模10^9+7的值. Solution 设 \(S(n,m)\) 表示 \(\sum_{i=1}^{m}\phi(n*i)\) \(Ans=\sum_{i=1} ...

  9. BZOJ3512:DZY Loves Math IV

    传送门 Sol 好神仙的题目.. 一开始就直接莫比乌斯反演然后就 \(GG\) 了 orz 题解 permui 枚举 \(n\),就是求 \(\sum_{i=1}^{n}S(i,m)\) 其中\(S( ...

随机推荐

  1. vi/vim 常用命令 之 一图定天下!

    直接上干活,一张图解决~

  2. WHO ARE YOU?--writeup

    TIPS:广东强网杯线上题 总结知识点:BASE64,ROT13 0x00 Base64 什么是Base64? Base64编码原理 其用途 什么是Base64? Base64是一种基于64个可打印字 ...

  3. JAVA的关键特性

    Java团队对设计Java时的关键考虑因素进行了总结,关键特性包含以下列表: 简单性 安全性 可移植性 面向对象 健壮性 多线程 体系结构中立 解释执行 高性能 分布式 动态性 简单性 Java的设计 ...

  4. ffmpeg——关于视频压缩

    这篇博客主要讲有关于视频压缩的问题,解决视频文件太大,不便于下载,占用存储空间过大等问题,在缩小视频大小的同时,保证视频的观看质量.主要讲以下几点: 1.压缩视频工具ffmpeg 2.压缩视频的技术参 ...

  5. WebGL——水波纹特效

    大家好,今天我ccentry要做一个水波纹特效,我们来看看水波纹特效的做法.首先我们来看一下水波纹特效的效果是怎么样的,请看下图. 我们要做的就是类似这种纹理特效,那么我们来看看是如何制作的吧.首先鲫 ...

  6. if _ else if _ else,case,程序逻辑判断- java基础

    //单个判端 if(){ } //双判端 if(){ }else{ } //多重判端 if(){ }else if(){ }else if(){ }else{ } package test1; // ...

  7. 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)

    一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...

  8. 【坚持】Selenium+Python学习之从读懂代码开始 DAY6

    2018/05/23 Python内置的@property装饰器 [@property](https://www.programiz.com/python-programming/property) ...

  9. v-if、v-show 指令

    HTML部分: <div id="app"> <button type="button" @click="flag=!flag&qu ...

  10. systemctl status ssh.service 服务重启出现报错

    Case: ubuntu在从Ubuntu 16.04 LTS 升级到18.04 的时候,执行 do-release-upgrade -d 后,发现ssh无法登陆服务器, Solution: 1.通过s ...