BZOJ5302 HAOI2018奇怪的背包(动态规划)
由裴蜀定理,子集S有解当且仅当gcd(S,P)|w。
一个显然的dp是设f[i][j]为前i个数gcd为j的选取方案。注意到这里的gcd一定是P的约数,所以状态数是n√P的。然后可以通过这个得到gcd是j约数的选取方案。复杂度O(n√PlogP)。
考虑优化。注意到每个数取gcd后的贡献仅与其和P的gcd有关,而这又一定是P的约数,所以本质不同的物品数量也是O(√P)。那么上面的dp就可以优化到O(PlogP)了。当然这里的P是P的约数个数的平方,这显然是远远达不到P的。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000010
#define K 2010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,k,d[K],cnt[K],f[K][K],ans[K],t;
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5302.in","r",stdin);
freopen("bzoj5302.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
for (int i=;i*i<=k;i++)
if (k%i==)
{
d[++t]=i;cnt[t]=;
if (i*i!=k) d[++t]=k/i,cnt[t]=;
}
sort(d+,d+t+);
for (int i=;i<=n;i++) (cnt[lower_bound(d+,d+t+,gcd(k,read()))-d]<<=)%=P;
f[][]=;
for (int i=;i<=t;i++)
for (int j=;j<=t;j++)
inc(f[i][j],f[i-][j]),inc(f[i][lower_bound(d+,d+t+,gcd(d[i],d[j]))-d],1ll*f[i-][j]*(cnt[i]-)%P);
for (int i=;i<=t;i++)
for (int j=;j<=i;j++)
if (d[i]%d[j]==) inc(ans[i],f[t][j]);
for (int i=;i<=m;i++) printf("%d\n",ans[lower_bound(d+,d+t+,gcd(k,read()))-d]);
return ;
}
BZOJ5302 HAOI2018奇怪的背包(动态规划)的更多相关文章
- BZOJ5302: [Haoi2018]奇怪的背包
BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...
- BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】
题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同 ...
- [BZOJ5302][HAOI2018]奇怪的背包(DP)
由裴蜀定理得,一个集合S能得到w当且仅当gcd(S+{P})|w. 于是f[i][j]表示前i个物品gcd为j的方案数,发现gcd一定是P的因数,故总复杂度$O(n\sqrt{P}\log P)$(需 ...
- 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
[BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...
- [HAOI2018]奇怪的背包 (DP,数论)
[HAOI2018]奇怪的背包 \(solution:\) 首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论.我们先分析一下,每一个物品可以放无数次,可以达 ...
- 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...
- haoi2018奇怪的背包题解
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302 对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p ...
- bzoj 5302: [Haoi2018]奇怪的背包
Description Solution 首先 \(v_1,v_2,v_3...v_n,P\) 能够构成的最小数是 \(gcd(P,v_1,v_2,v_3...v_n)\) 然后 \(gcd(P,v_ ...
- Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】
题目分析: 首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个. 由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1, ...
随机推荐
- Jmeter 数据库配置池设置IP为参数
我在网上查了很多资料,发现jmter链接数据库的URL都是设置成固定值的.没有参数化. 当我需要使用配置文件链接不同服务器上的数据库的时候,发现无法实现. 原因在于:jmeter的元件执行优先级是配置 ...
- 使用Xshell远程访问tensorboard
在使用tensorflow时,由于本地资源的限制,一般在远程服务器上训练模型,而服务器没有图形界面,那么在训练过程中如何实时地访问tensorboard可视化数据呢? 如果服务器和本地电脑连接在同一个 ...
- Cinema 4D* 中令人惊叹的体积效果
原文链接 第一部分 第二部分 云.雾.星云.火状结构等体积效果是 3D 美术师日常工作中的常见任务.借助 Turbulence FD* 或 X-Particles* 等当代第三方插件进行流体或粒子模拟 ...
- 戴尔win10重新安装win7系统
戴尔v5468电脑win10重装回win7系统 首先是公司需要用到ie8来执行公司的项目维护,都是很早之前的项目了,因为是对接政府相关的业务,不怎么有把握对项目进行稳定更新,所以我就为这个ie8操碎了 ...
- 前端基础之CSS(总结)
css学什么?? 主要学习选择器和属性,选择器是去找到标签的位置,属性是给标签增加需要的样式. CSS选择器 1.基本选择器: 1.标签选择器 2.ID选择器 3.类选择器(class="c ...
- Ubuntu下LimeSDR Mini使用说明
本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 LimeSDR链接:https://item.taobao.com/item.htm?spm=a230r.1 ...
- 从零开始的Python学习Episode 22——多线程
多线程 线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. ...
- 微软职位内部推荐-Software Engineer II-Senior Software Engineer for Satori
微软近期Open的职位: Title: Software Engineer II-Senior Software Engineer for Satori, STC Location: Beijing ...
- crosstool-ng搭建交叉编译环境注意事项
一,crosstool-ng的下载及编译方法 可以参考如下网站: http://www.crosstool-ng.org/ 二,编译过程注意事项 1)如果遇到有些代码包不能下载,请依据指定版本,在这里 ...
- 请教JDBC中的thin和OCI的区别\
请教JDBC中的thin和OCI的区别 https://zhidao.baidu.com/question/2267123737573204748.html