【bzoj3209】 花神的数论题
http://www.lydsy.com/JudgeOnline/problem.php?id=3209 (题目链接)
题意
${sum(i)}$表示${i}$的二进制表示中${1}$的个数。求${\prod^n sum(i)}$
Solution
${f_{i,s}}$表示dp到第${i}$位,已经有${s}$个${1}$时的乘积。然后一路dfs就可以了。
细节
LL,返回值要与1取个max
代码
// bzoj3598
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 10000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL f[60][60],m;
int n,t[60]; LL dfs(int pos,LL s,int lim) {
if (!pos) return s;
if (!lim && f[pos][s]!=-1) return f[pos][s];
int end=lim ? t[pos] : 1;
LL res=1;
for (int i=0;i<=end;i++)
(res*=max(1ll,dfs(pos-1,s+i,lim && i==end)))%=MOD;
if (!lim) f[pos][s]=res;
return res;
}
int main() {
memset(f,-1,sizeof(f));
scanf("%lld",&m);
for (n=0;m;m>>=1) t[++n]=m&1;
printf("%lld",dfs(n,0,1));
return 0;
}
【bzoj3209】 花神的数论题的更多相关文章
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- BZOJ3209 花神的数论题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- BZOJ3209 花神的数论题 【组合数 + 按位计数】
题目 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC -- 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有超级难的神题啦-- 我等蒟蒻又遭殃了. 花神的题目 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
随机推荐
- 【坚持】Selenium+Python学习之从读懂代码开始 DAY4
2018/05/21 [生成器详解:廖雪峰的官方网站](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d ...
- 学习python,第二篇
注释 # 单行注释 ''' 多行注释 ''' 或者 """ 多行注释 """ # Author: Itxpl mag ...
- Netty源码分析第5章(ByteBuf)---->第8节: subPage级别的内存分配
Netty源码分析第五章: ByteBuf 第八节: subPage级别的内存分配 上一小节我们剖析了page级别的内存分配逻辑, 这一小节带大家剖析有关subPage级别的内存分配 通过之前的学习我 ...
- 琴声不等式--jensen
(来自百度百科) 1. 凹函数,不加权 2. 凹函数,加权 3. 凸函数,不加权 4. 凸函数,加权 应用 在EM算法Q函数的推导中,用到了第二个不等式(凹函数,加权)
- 无法连接 Plugins Market 失效的日子
一.问题背景 不知道是什么原因,我的 Intellij 连接不上 Plugins Market,这时候我需要使用 @Data 注解来自动生成 Getter.Setter 方法.在添加了相应的依赖之后, ...
- Mac环境搭建以太坊私有链
原文地址: 石匠的blog 为了测试以太坊智能合约,最方便的是在本地搭建一个以太坊私有链.在mac上搭建环境主要需要以下步骤. geth安装 geth是go-ethereum的简写,是一个用go语言编 ...
- Python之并发编程-concurrent
方法介绍 #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池 ...
- 通过exp命令对Oracle数据库进行备份操作(提供两种情况的备份:备份本地,备份远程的数据库)
exp 用户名/密码@数据库所在ip地址:数据库端口号/数据库的service-name file=存储到的位置 这个是能成功的 http://www.2cto.com/database/201402 ...
- [东北师大软工]Week2-作业2:个人项目实战 初步测试结果
作业地址 https://edu.cnblogs.com/campus/nenu/2016SE_NENU/homework/1656 测试须知 测试机为Windows环境,所有提交到Coding.ne ...
- 自学iOS-获取当前时间
NSDate * senddate=[NSDate date]; NSDateFormatter *dateformatter=[[NSDateFormatter alloc] init]; [dat ...