http://www.lydsy.com/JudgeOnline/problem.php?id=3209 (题目链接)

题意

  ${sum(i)}$表示${i}$的二进制表示中${1}$的个数。求${\prod^n sum(i)}$

Solution

  ${f_{i,s}}$表示dp到第${i}$位,已经有${s}$个${1}$时的乘积。然后一路dfs就可以了。

细节

  LL,返回值要与1取个max

代码

// bzoj3598
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 10000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL f[60][60],m;
int n,t[60]; LL dfs(int pos,LL s,int lim) {
if (!pos) return s;
if (!lim && f[pos][s]!=-1) return f[pos][s];
int end=lim ? t[pos] : 1;
LL res=1;
for (int i=0;i<=end;i++)
(res*=max(1ll,dfs(pos-1,s+i,lim && i==end)))%=MOD;
if (!lim) f[pos][s]=res;
return res;
}
int main() {
memset(f,-1,sizeof(f));
scanf("%lld",&m);
for (n=0;m;m>>=1) t[++n]=m&1;
printf("%lld",dfs(n,0,1));
return 0;
}

【bzoj3209】 花神的数论题的更多相关文章

  1. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  2. [bzoj3209]花神的数论题_数位dp

    花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...

  3. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  4. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

  5. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  6. BZOJ3209 花神的数论题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

  8. BZOJ3209 花神的数论题 【组合数 + 按位计数】

    题目 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC -- 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有超级难的神题啦-- 我等蒟蒻又遭殃了. 花神的题目 ...

  9. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  10. bzoj3209 花神的数论题 (二进制数位dp)

    二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...

随机推荐

  1. python包管理工具pip

    你可以使用一个名为 pip 的程序来安装.升级和移除软件包.默认情况下 pip 将从 Python Package Index <https://pypi.org> 安装软件包.你可以在浏 ...

  2. 六度空间(MOOC)

    六度空间: “六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论.这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五 ...

  3. python 输出格式化之后的时间格式

    import timetime.strftime("%Y-%m-%d %H:%M:%S", time.localtime())

  4. SQL IF while 游标

    -- if语句使用示例 declare @a int set @a=1 begin print @a =@a+1 end else begin print 'noooo' end -- while语句 ...

  5. uptime命令详解

    基础命令学习目录首页 users个数和窗口数一致 原文链接:https://www.cnblogs.com/ultranms/p/9253217.html uptime 另外还有一个参数 -V(大写) ...

  6. ipcs命令详解

    基础命令学习目录首页 多进程间通信常用的技术手段包括共享内存.消息队列.信号量等等,Linux系统下自带的ipcs命令是一个极好的工具,可以帮助我们查看当前系统下以上三项的使用情况,从而利于定位多进程 ...

  7. Python序列之元组 (tuple)

    作者博文地址:http://www.cnblogs.com/spiritman/ Python的元组与列表类似,同样可通过索引访问,支持异构,任意嵌套.不同之处在于元组的元素不能修改.元组使用小括号, ...

  8. python处理数据pandas视频资料

    python强大数据处理工具pandas视频资料:https://pan.baidu.com/s/17VRd1cgFaKi20drfCgZ8Gg

  9. java浮点数存储

    转自: [解惑]剖析float型的内存存储和精度丢失问题 1.小数的二进制表示问题 首先我们要搞清楚下面两个问题: (1)  十进制整数如何转化为二进制数 算法很简单.举个例子,11表示成二进制数: ...

  10. 修复webpack自动刷新页面慢的问题

    新建.babelrc文件,配置如下 { "presets": [ "es2015" ], "ignore":[ "react-ro ...