http://www.lydsy.com/JudgeOnline/problem.php?id=3209 (题目链接)

题意

  ${sum(i)}$表示${i}$的二进制表示中${1}$的个数。求${\prod^n sum(i)}$

Solution

  ${f_{i,s}}$表示dp到第${i}$位,已经有${s}$个${1}$时的乘积。然后一路dfs就可以了。

细节

  LL,返回值要与1取个max

代码

// bzoj3598
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 10000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL f[60][60],m;
int n,t[60]; LL dfs(int pos,LL s,int lim) {
if (!pos) return s;
if (!lim && f[pos][s]!=-1) return f[pos][s];
int end=lim ? t[pos] : 1;
LL res=1;
for (int i=0;i<=end;i++)
(res*=max(1ll,dfs(pos-1,s+i,lim && i==end)))%=MOD;
if (!lim) f[pos][s]=res;
return res;
}
int main() {
memset(f,-1,sizeof(f));
scanf("%lld",&m);
for (n=0;m;m>>=1) t[++n]=m&1;
printf("%lld",dfs(n,0,1));
return 0;
}

【bzoj3209】 花神的数论题的更多相关文章

  1. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  2. [bzoj3209]花神的数论题_数位dp

    花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...

  3. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  4. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

  5. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  6. BZOJ3209 花神的数论题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

  8. BZOJ3209 花神的数论题 【组合数 + 按位计数】

    题目 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC -- 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有超级难的神题啦-- 我等蒟蒻又遭殃了. 花神的题目 ...

  9. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  10. bzoj3209 花神的数论题 (二进制数位dp)

    二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...

随机推荐

  1. Netty源码分析第3章(客户端接入流程)---->第5节: 监听读事件

    Netty源码分析第三章: 客户端接入流程 第五节: 监听读事件 我们回到AbstractUnsafe的register0()方法: private void register0(ChannelPro ...

  2. Netty源码分析第4章(pipeline)---->第5节: 传播outbound事件

    Netty源码分析第五章: pipeline 第五节: 传播outBound事件 了解了inbound事件的传播过程, 对于学习outbound事件传输的流程, 也不会太困难 在我们业务代码中, 有可 ...

  3. Centos7 安装与破解 Confluence 6.7.1

    1.1硬件需求建议: CPU:32/64 bit 2.27GHz双核心以上之CPU: 内存:8GB以上: 硬盘:300GB,7200转以上: 建议数据库.Confluence等各自独立一台服务器(本测 ...

  4. Nginx内置的嵌入变量

    Nginx核心模块ngx_http_core_module自带有许多内置嵌入的变量,这些变量方便我们配置和使用nginx,在nginx的配置文件中我们可以以$开头直接使用这些变量,这些变量表示客户端请 ...

  5. github在版本库中删除某个文件的所有历史记录

    github的目的就是版本控制,记录每一个版本的变动.然而有的时候我们往往希望从版本库中彻底删除某个文件,不再显示在历史记录中.例如不小心上传了一堆错误的文件,或者不小心上传了帐号.密码,那么这个时候 ...

  6. java之接口开发-初级篇

    简述:转眼之间已经开发java有五年之余了,从以前的刚刚接触电脑,到现在的公司上班,真是转眼之间呀!前两年开发过前端,后台和Android,Android火的那几年,差点转去做Android,哈哈!后 ...

  7. Django FBV/CBV、中间件、GIT使用

    s5day82 内容回顾: 1. Http请求本质 Django程序:socket服务端 a. 服务端监听IP和端口 c. 接受请求 \r\n\r\n:请求头和请求体 \r\n & reque ...

  8. 团队博客作业Week5 --- 团队贡献分--分配规则

    团队会议 时间:公元2015年10月26日22时3分20秒 地点:宿舍楼716房间 与会人员:陈谋,李剑锋,卢惠民,刘夕霆,仉伯龙,潘成鼎. 会议内容:今天的组会主要讨论的是项目团队贡献分的计算方式, ...

  9. [buaa-SE-2017]结对项目-数独程序扩展

    结对项目-数独程序扩展 step1~step3:github:SE-Sudoku-Pair-master step4:github:SE-Sudoku-Pair-dev-combine step5:g ...

  10. 团队冲刺--Seven

    昨天: 司宇航:测试功能版块,优化功能版块. 马佳慧:优化界面 . 王金萱:合并程序. 季方:  合并程序. 今天: 司宇航:优化功能版块. 马佳慧:优化界面 . 王金萱:优化界面. 季方:  完善功 ...