4408: [Fjoi 2016]神秘数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 464  Solved: 281
[Submit][Status][Discuss]

Description

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

Input

第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。

Output

对于每个询问,输出一行对应的答案。

Sample Input

5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5

Sample Output

2
4
8
8
8

HINT

对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9

Source

[Submit][Status][Discuss]

福建自古出神题……

如果存在一个集合,使得$[1,x]$内的数字都能被表示,新加入一个数$y$,那么会出现如下两种情况:

  1. $y \leq x+1$,则新集合可以表示$[1,x+y]$内的所有数字。

  2. $y \gt x+1$,则新集合表示的区间会产生“断裂”,即$x+1$依旧无法被表示,所以该集合的神秘数还是$x+1$。

基于以上分析,产生下面的算法,用以求一个给定集合的神秘数:

首先设$ans=1$,作为最初假象的神秘数,然后求出

\[get=\sum_{a_{i} \leq ans}a_{i}\]

那么如果$get \lt ans$,则$ans$就是神秘数,否则令$ans=get+1$,继续过程。

那么用可持久化线段树维护区间内权值范围和即可。

 #include <bits/stdc++.h>

 inline char Char(void)
{
static const int siz = << ; static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz; if (hd == tl)
fread(hd = buf, , siz, stdin); return *hd++;
} inline int Int(void)
{
int ret = , neg = , c = Char(); for (; c < ; c = Char())
if (c == '-')neg ^= true; for (; c > ; c = Char())
ret = ret * + c - ''; return neg ? -ret : ret;
} const int mxn = ;
const int siz = ; int n, m, num[mxn], map[mxn], tot; int ls[siz], rs[siz], sm[siz], cnt, root[mxn]; void insert(int &t, int f, int l, int r, int p, int v)
{
t = ++cnt; ls[t] = ls[f];
rs[t] = rs[f];
sm[t] = sm[f] + v; if (l != r)
{
int mid = (l + r) >> ; if (p <= mid)
insert(ls[t], ls[f], l, mid, p, v);
else
insert(rs[t], rs[f], mid + , r, p, v);
}
} int query(int a, int b, int l, int r, int lt, int rt)
{
if (l == lt && r == rt)
return sm[a] - sm[b]; int mid = (l + r) >> ; if (rt <= mid)
return query(ls[a], ls[b], l, mid, lt, rt);
else if (lt > mid)
return query(rs[a], rs[b], mid + , r, lt, rt);
else
return query(ls[a], ls[b], l, mid, lt, mid) + query(rs[a], rs[b], mid + , r, mid + , rt);
} signed main(void)
{
n = Int(); for (int i = ; i <= n; ++i)
num[i] = map[i] = Int(); std::sort(map + , map + n + ); tot = std::unique(map + , map + n + ) - map; for (int i = ; i <= n; ++i)
num[i] = std::lower_bound(map + , map + tot, num[i]) - map,
insert(root[i], root[i - ], , tot, num[i], map[num[i]]); m = Int(); for (int i = ; i <= m; ++i)
{
int l = Int();
int r = Int(); int ans = , get, pos; while (true)
{
pos = std::upper_bound(map + , map + tot, ans) - map - ;
get = query(root[r], root[l - ], , tot, , pos);
if (get < ans)break;
else ans = get + ;
} printf("%d\n", ans);
}
}

@Author: YouSiki

BZOJ 4408: [Fjoi 2016]神秘数的更多相关文章

  1. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  2. BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...

  3. ●BZOJ 4408 [Fjoi 2016]神秘数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...

  4. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  5. bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...

  6. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  7. 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 452  Solved: 273 [Submit][Stat ...

  8. [BZOJ4408][Fjoi 2016]神秘数

    [BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...

  9. 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题

    [BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...

随机推荐

  1. Datawhale MySQL 训练营 Task4 表联结

    学习内容 MySQL别名 列别名,将查询或者筛选出来列用AS 命名,如果有空格则需要引号 '' SELECT xxx AS xxxx FROM WHERE GROUP BY HAVING 表别名, 把 ...

  2. DICOM 协议学习笔记之 What is DICOM

    什么是DICOM? Dicom (Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052 ...

  3. Spring学习(4)IOC容器配置bean:定义与实例化

    一.  IOC容器配置 1. 一些概念 (1)IOC容器: 定义:具有管理对象和管理对象之间的依赖关系的容器. 作用:应用程序无需自己创建对象,对象由IOC容器创建并组装.BeanFactory是IO ...

  4. Prometheus 添加报警规则

    https://prometheus.io/docs/prometheus/latest/migration/

  5. fs - 文件系统

    fs 模块提供了一些 API,用于以一种类似标准 POSIX 函数的方式与文件系统进行交互. 用法如下: const fs = require('fs'); 所有的文件系统操作都有异步和同步两种形式. ...

  6. 团队项目M1阶段个人反思

    郑培蕾: 作为项目的PM,我前期的工作还是有很大的缺陷的,因为没有在开发之前对项目进行一个合理的评估,所以后来分配任务的时候就很不科学, 而且任务分配的比较粗糙,没有细化到每个人每天应该做什么,这就导 ...

  7. [BUAA软工]第零次博客作业---问题回答

    [BUAA软工]第0次博客作业 项目 内容 这个作业属于哪个课程 北航软工 这个作业的要求在哪里 第0次个人作业 我在这个课程的目标是 学习如何以团队的形式开发软件,提升个人软件开发能力 这个作业在哪 ...

  8. StringBuffer 与 StringBuilder类的使用

    /*如果需要频繁修改字符串 的内容,建议使用字符串缓冲 类(StringBuffer). StringBuffer 其实就是一个存储字符 的容器. 笔试题目:使用Stringbuffer无 参的构造函 ...

  9. Software-Defined Networking A Comprehensive Survey(一)

    传统网络:1 复杂,难于管理 2 很难实现根据之前定义的方案进行配置,3 对于缺陷.变化不能够再次进行配置 4 控制和数据平面绑定在一起,使许多缺陷难于解决 SDN网络:通过打破传统网络垂直整合,从底 ...

  10. linux上传的命令

    pscp D:\apache-tomcat-8.0.38\webapps\GameDataServer.zip root@112.74.32.215:/usr/local/tools/tomcat/a ...