\(\textbf{天下事有难易乎?为之,则难者亦易矣 不为,则易者亦难矣------《为学》}\)

(中国第59届国际数学奥林匹克国家集训队2018.3.20日测试题)
证明:存在常数\(C>0\)使得对于任意的正整数\(m\),以及任意\(m\)个正整数\(a_1,a_2,\cdots,a_m\),都有
\(H(a_1)+H(a_2)+\cdots+H(a_m)\le C\left(\sum\limits_{k=1}^m{ka_k}\right)^{\frac{1}{2}}\),其中\(H(n)=\sum\limits_{k=1}^{n}{\dfrac{1}{k}}\)

证明:存在.\(C=2\)满足要求.记\(\{a_1,a_2,\cdots,a_m\}=\{b_1,b_2\cdots,b_m\}\)其中\(b_1\ge b_2\ge \cdots \ge b_m\)
\[\begin{align*}
LHS&=\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_1}+\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_2}
+\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_m}\\
& \le m\left(\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_m}\right) \\
& \le m\sqrt{(1^2+1^2+\cdots 1^2)(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\cdots+\dfrac{1}{b_m^2})}\quad(\textbf{此处用到柯西不等式})\\
&\le m\sqrt{b_m\cdot(1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}\cdots+\dfrac{1}{b_m-1}-\dfrac{1}{b_m})} \quad (\textbf{此处用到}\dfrac{1}{k^2}\le\dfrac{1}{k-1}-\dfrac{1}{k})\\
&=m\sqrt{2b_m-1}\\
RHS&=C\sqrt{1a_1+2a_2+\cdots+ma_m}\\
&\ge C\sqrt{(1+2+\cdots m)b_m}\\
&=C\sqrt{\dfrac{m(m+1)}{2}b_m}
\end{align*}\]
取\(C=2\)时 $ 2\sqrt{\dfrac{m(m+1)}{2}b_m}\ge m\sqrt{2b_m-1}$显然成立.

MT【140】是否存在常数$\textbf{C}$的更多相关文章

  1. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  2. MT【142】Bachet 问题,进位制

    问题: 满足下面两种限制条件下要想称出40以内的任何整数重量,最少要几个砝码: i)如果砝码只能在天平的某一边; ii)如果砝码可以放在天平的两边. 提示:对于 i)先证明如下事实: \[\textb ...

  3. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  4. php 截取代码方法(140个字后的。)

    //截取摘要public static function mbsubstr($str){    $strleng = mb_strlen($str,"utf8");    $mbs ...

  5. 课堂Beta发布140字评论

    Beta发布140字评论: 第一组:飞天小女警 此项目组的功能是礼物挑选,创意十足,用户只要一听名字便会被深深吸引,并且页面设计感,时尚感十足,不断吸引客户的眼球,而且发布到云服务器上面. 第二组:金 ...

  6. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  7. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. iOS开发之----常用函数和常数

    介绍一下Objective-c常用的函数,常数变量 算术函数 [算术函数] 函数名 说明 int rand() 随机数生成.(例)srand(time(nil)); //随机数初期化int val = ...

  9. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

随机推荐

  1. aws存储桶s3使用

    关于aws s3的使用说明: aws官方文档地址:https://docs.aws.amazon.com/s3/index.html#lang/zh_cn 创建s3与基础使用: 1.登陆aws控制台- ...

  2. opengl矩阵向量

    如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...

  3. 我的第一个bootstrap实例

    先上代码: <!doctype html><html lang="en"><head> <meta charset="UTF-8 ...

  4. 如何防范和应对Redis勒索,腾讯云教你出招

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 9月10日下午,又一起规模化利用Redis未授权访问漏洞攻击数据库的事件发生,此次 ...

  5. spring study

    Dependency Injection The Inversion of Control(IoC) is a general concept, and it can be expressed in ...

  6. centos下配置gitosis服务器遇到的困难

    这篇博客主要讲的是在centos下配置gitosis遇到的问题. 背景:centos7.2 64 :gitosis2.0 1.困难1 1)产生的问题及原因.gitosis没有安装成功,没有出现fini ...

  7. 团队项目-北航MOOC系统Android客户端 NABC

    北航MOOC系统Android客户端 NABC (N) Need 需求 MOOC的全名是Massive Open Online Course,被称作大型开放式网络课程.2012年,美国的顶尖大学陆续设 ...

  8. [BUAA软工]第零次博客作业---问题回答

    [BUAA软工]第0次博客作业 项目 内容 这个作业属于哪个课程 北航软工 这个作业的要求在哪里 第0次个人作业 我在这个课程的目标是 学习如何以团队的形式开发软件,提升个人软件开发能力 这个作业在哪 ...

  9. Python写一个根据日期计算是星期几的模块

    import datetimedef get_week_day(date): week_day = { 0: '星期一', 1: '星期二', 2: '星期三', 3: '星期四', 4: '星期五' ...

  10. BETA-7

    前言 我们居然又冲刺了·七 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 经过分析发现,为提升速率估测的可靠性,目前最具可改造性的参数为帧间间隔,调用参 ...