BZOJ 2194 快速傅立叶变换之二 | FFT
BZOJ 2194 快速傅立叶变换之二
题意
给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\)。
题解
我们要把这个式子转换成多项式乘法的形式。
一个标准的多项式乘法是这样的:
\]
来看看原式:
\]
将a翻转得到a':
\]
调整求和指标:
\]
那么求出\(c_k\),之后取\(c\)的前\(n\)位,倒着输出即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <complex>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 1000005;
const double PI = acos(-1);
typedef complex<double> cp;
int len, ta[N], tb[N], res[N];
cp omg[N], inv[N];
void init(int n){
for(int i = 0; i < n; i++){
omg[i] = cp(cos(2 * PI * i / n), sin(2 * PI * i / n));
inv[i] = conj(omg[i]);
}
}
void fft(cp *a, int n, cp *omg){
int lim = 0;
while((1 << lim) < n) lim++;
for(int i = 0; i < n; i++){
int t = 0;
for(int j = 0; j < lim; j++)
if(i >> j & 1) t |= 1 << (lim - j - 1);
if(i < t) swap(a[i], a[t]);
}
for(int l = 2; l <= n; l *= 2){
int m = l / 2;
for(cp *p = a; p != a + n; p += l)
for(int i = 0; i < m; i++){
cp t = omg[n / l * i] * p[m + i];
p[m + i] = p[i] - t;
p[i] += t;
}
}
}
void multiply(){
static cp a[N], b[N];
for(int i = 0; i < len; i++)
a[i].real(ta[i]), b[i].real(tb[i]);
int n = 1;
while(n < 2 * len) n *= 2;
init(n);
fft(a, n, omg);
fft(b, n, omg);
for(int i = 0; i < n; i++)a[i] *= b[i];
fft(a, n, inv);
for(int i = 0; i < n; i++)
res[i] = floor(a[i].real() / n + 0.5);
}
int main(){
read(len);
for(int i = 0; i < len; i++)
read(ta[i]), read(tb[i]);
for(int i = 0, j = len - 1; i < j; i++, j--)
swap(ta[i], ta[j]);
multiply();
for(int i = len - 1; i >= 0; i--)
write(res[i]), enter;
return 0;
}
BZOJ 2194 快速傅立叶变换之二 | FFT的更多相关文章
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- bzoj 2194 快速傅立叶之二 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...
- BZOJ 2194 快速傅立叶之二 ——FFT
[题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- [BZOJ]2194: 快速傅立叶之二
题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...
- 【刷题】BZOJ 2194 快速傅立叶之二
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj 2194: 快速傅立叶之二【NTT】
看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...
- 【BZOJ 2194】2194: 快速傅立叶之二(FFT)
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1273 Solved: 745 Description 请计算C[k]= ...
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
随机推荐
- Unity 实现一个简单的 TPS 相机
效果如下: 代码如下: public class TPSCamera : MonoBehaviour { /// <summary> /// 目标对象 /// </summary&g ...
- linux_connect_mysql
原文来自 https://www.cnblogs.com/lywy510/p/3615710.html #include <stdio.h> #include <stdlib.h&g ...
- stat命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangcsdn/article/details/81012732 stat命令用于显示文件的状态信息.stat命令的 ...
- find 删除文件
find 目录 -type f -name '*' -print0 | xargs -0 rm
- MFC按钮、列表控件应用实例(一)
需求:实现张三.李四.王五 3 人的课程选择,并将选课结果提交到列表框中显示. 实现过程: 1.建立对话框mfc工程. 2.添加控件 tab 顺序 控 件 类 型 控件 ID1 Button IDC_ ...
- 进阶系列(5)—— C#XML使用
一.XML介绍 XML文件是一种常用的文件格式,例如WinForm里面的app.config以及Web程序中的web.config文件,还有许多重要的场所都有它的身影.Xml是Internet环境中跨 ...
- python learning Process and Thread.py
# 多进程 # Windows下面没有fork ,请在linux下跑下面的代码 import os print('Process (%s) start...' % os.getpid()) pid = ...
- [二叉树建树&完全二叉树判断] 1110. Complete Binary Tree (25)
1110. Complete Binary Tree (25) Given a tree, you are supposed to tell if it is a complete binary tr ...
- CodeM Qualifying Match Q1
问题描述: 具体地说,就是在第二段音频中找到一个长度和第一段音频相等且是连续的子序列,使得它们的 difference 最小.两段等长音频的 difference 定义为: difference = ...
- 【第十周】psp
代码累计 300+575+475+353+620+703=2926 随笔字数 1700+3000+3785+4210+4333+3032=20727 知识点 机器学习,支持向量机 数据库技术 Acm刷 ...