https://www.lydsy.com/JudgeOnline/problem.php?id=1150

你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。
已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。
然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K个办公楼一定是相异的)。
此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。
下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。
上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用 K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长 4km 的网络电缆,满足距离之和最小的要求。

一道需要些简单思(trick)维的题。

发现了我们只能取相邻两个办公楼之后我们就能够写出dp了,就不说了。

正解考虑贪心去取:我们将每一对办公楼的距离加入到堆里面,然后每次弹出最小,并且弹出的两侧办公楼对就不能再取了。是否可以呢?

显然是不行的,你会发现样例就是个反例:2 1 2 6,你取完1之后只能取6,结果输出了7。

于是我们要给程序一个“后悔“的机会:将弹出的两侧办公楼对合为一对,其距离为两个办公楼对的距离和-弹出的办公楼距离。

这样我们取这个对的时候就相当于减去了中间的对而取了旁边两侧的对,就是一个“后悔”的过程啦!

维护两侧的对可以用链表来实现。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define fi first
#define se second
const int N=1e5+;
const int INF=1e9+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
map<pii,bool>mp;
priority_queue<pii,vector<pii>,greater<pii> >q;
int n,k,a[N],pre[N],nxt[N];
int main(){
n=read(),k=read();
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<n;i++){
a[i]=a[i+]-a[i];
pre[i]=i-;nxt[i-]=i;
q.push(pii(a[i],i));
}
nxt[n-]=n;pre[]=;nxt[n]=n;a[]=a[n]=INF;
int ans=;
while(k--){
pii p=q.top();q.pop();
if(mp.count(p)){k++;mp.erase(p);continue;}
ans+=p.fi;
a[p.se]=a[pre[p.se]]+a[nxt[p.se]]-p.fi;
mp[pii(a[pre[p.se]],pre[p.se])]=;
mp[pii(a[nxt[p.se]],nxt[p.se])]=;
q.push(pii(a[p.se],p.se));
pre[p.se]=pre[pre[p.se]];
nxt[p.se]=nxt[nxt[p.se]];
nxt[pre[p.se]]=p.se;
pre[nxt[p.se]]=p.se;
}
printf("%d\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1150:[APIO/CTSC2007]数据备份——题解的更多相关文章

  1. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

  2. 【bzoj1150】[CTSC2007]数据备份Backup 模拟费用流+链表+堆

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  3. [APIO / CTSC2007]数据备份 --- 贪心

    [APIO / CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份. 然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公 ...

  4. BZOJ1150:[CTSC2007]数据备份

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?id ...

  5. 【bzoj1150】[CTSC2007]数据备份Backup

    将k对点两两相连,求最小长度 易证得,最优方案中,相连的办公楼一定是取相邻的比取不相邻的要更优 然后就可以用贪心来做这道题了.. 将初始所有的线段放进堆里 每次取最短的线段进行连接,且ans+=a[i ...

  6. BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆

    BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...

  7. bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆

    [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2727  Solved: 1099[Submit][Stat ...

  8. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  9. 【链表】bzoj 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1136  Solved: 458[Submit] ...

随机推荐

  1. Unity消息简易框架 Advanced C# messenger

    Unity消息简易框架 Advanced C# messenger Unity C# 消息机制  [转载 雨凇MOMO博客] https://www.xuanyusong.com/archives/2 ...

  2. v-if、v-show 指令

    HTML部分: <div id="app"> <button type="button" @click="flag=!flag&qu ...

  3. C++ 类 构造函数 constructor

    构造函数 当定义了一个整型变量: int a; 这会申请了一块内存空间来存储a,但是这块内存中原本有数据的,可能是任何值,这不是你所希望的,若你就希望a表示1,所以要把a的值赋值为1. ; 例: #i ...

  4. No.110_第三次团队会议

    前端的易帜 前端在整个软件中有着举足轻重的地位.前端设计一般可以理解为视觉设计,前端开发则是前台代码的实现. 随着科技水平的提高和生产力的提高,人民对于审美的要求逐渐增高.在没有科技壁垒的情况下,是否 ...

  5. Linux 读书笔记 三 (第二章)

      一.学习目标 1. 理解二进制在计算机中的重要地位 2. 掌握布尔运算在C语言中的应用 3. 理解有符号整数.无符号整数.浮点数的表示 4. 理解补码的重要性 5. 能避免C语言中溢出,数据类型转 ...

  6. Alpha版会议总结

    目前的进度: 实现了文字备忘的录入: 实现了提醒功能: 实现了可视化界面: 语音录入功能还没有完成: 界面相当粗糙: 遇到的问题: 语音录入按钮按下后没有反应,目前没有解决思路和方法. 原本的解屏功能 ...

  7. CentOS7服务器上搭建Gitlab

    Gitlab如何搭建? 安装gitlab所需要的依赖 sudo yum install curl policycoreutils openssh-server openssh-clients 使ssh ...

  8. 配置树莓派/Linux默认声卡设备

    1.设置默认声卡为USB声卡 在$HOME下新建.asoundrc $cd $HOME $nano .asoundrc 输入以下内容 defaults.ctl.card 1 defaults.pcm. ...

  9. flownet2.0 caffe anaconda2 编译安装

    1. 下载flownet2.0源码到指定目录 cd /home/zzq/saliency_models/deep_optical_flow git clone https://github.com/l ...

  10. mvc的过滤器学习-资料查询

    标题:Filtering in ASP.NET MVC 地址:https://docs.microsoft.com/en-us/previous-versions/aspnet/gg416513(v= ...