svmrank 的误差惩罚因子c选择 经验
C是一个由用户去指定的系数,表示对分错的点加入多少的惩罚,当C很大的时候,分错的点就会更少,但是过拟合的情况可能会比较严重,当C很小的时候,分错的点可能会很多,不过可能由此得到的模型也会不太正确,所以如何选择C是有很多学问的,不过在大部分情况下就是通过经验尝试得到的。

Trade-off between Maximum Margin and Classification Errors
http://mi.eng.cam.ac.uk/~kkc21/thesis_main/node29.html
The trade-off between maximum margin and the classification error (during training) is defined by the value C in Eqn.
. The value C is called the Error Penalty. A high error penalty will force the SVM training to avoid classification errors (Section
gives a brief overview of the significance of the value of C).
A larger C will result in a larger search space for the QP optimiser. This generally increases the duration of the QP search, as results in Table
show. Other experiments with larger numbers of data points (1200) fail to converge whenC is set higher than 1000. This is mainly due to numerical problems. The cost function of the QP does not decrease monotonically
. A larger search space does contribute to these problems.
The number of SVs does not change significantly with different C value. A smaller C does cause the average number of SVs to increases slightly. This could be due to more support vectors being needed to compensate the bound on the other support vectors. The
norm of w decreases with smaller C. This is as expected, because if errors are allowed, then the training algorithm can find a separating plane with much larger margin. Figures
,
,
and
show the decision boundaries for two very different error penalties on two classifiers (2-to-rest and 5-to-rest). It is clear that with higher error penalty, the optimiser gives a boundary that classifies all the training points correctly. This can give very irregular boundaries.
One can easily conclude that the more regular boundaries (Figures
and
) will give better generalisation. This conclusion is also supported by the value of ||w|| which is lower for these two classifiers, i.e. they have larger margin. One can also use the expected error bound to predict the best error penalty setting. First the expected error bound is computed using Eqn.
and
(
). This is shown in Figure
. It predicts that the best setting isC=10 and C=100. The accuracy obtained from testing data (Figure
) agrees with this prediction.

所以c一般 选用10,100
实测:
用svm_rank测试数据时,
经验参数,c=1,效果不如c=3.
故c=1,放弃。
但c=1 训练时间比c=3训练时间短。
总的来说,c越大,svm_rank learn的迭代次数越大,所耗训练时间越长。
svmrank 的误差惩罚因子c选择 经验的更多相关文章
- SVM学习(续)核函数 & 松弛变量和惩罚因子
SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...
- 惩罚因子(penalty term)与损失函数(loss function)
penalty term 和 loss function 看起来很相似,但其实二者完全不同. 惩罚因子: penalty term的作用是把受限优化问题转化为非受限优化问题. 比如我们要优化: min ...
- Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子
转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...
- SVM学习(五):松弛变量与惩罚因子
https://blog.csdn.net/qll125596718/article/details/6910921 1.松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而 ...
- 学习ARM7、ARM9的操作系统选择经验! [转]
一 首先说说ARM的发展 可以用一片大好来形容,翻开各个公司的网站,招聘里面嵌入式占据了大半工程师职位.广义的嵌入式无非几种:传统的什么51.AVR.PIC称做嵌入式微控制器:ARM是嵌 ...
- (六)6.4 Neurons Networks Autoencoders and Sparsity
BP算法是适合监督学习的,因为要计算损失函数,计算时y值又是必不可少的,现在假设有一系列的无标签train data: ,其中 ,autoencoders是一种无监督学习算法,它使用了本身作为标签以 ...
- CS229 6.4 Neurons Networks Autoencoders and Sparsity
BP算法是适合监督学习的,因为要计算损失函数,计算时y值又是必不可少的,现在假设有一系列的无标签train data: ,其中 ,autoencoders是一种无监督学习算法,它使用了本身作为标签以 ...
- 支持向量机SVM 参数选择
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...
- libSVM 参数选择
libSVM 参数选择 [预测标签,准确率,决策值]=svmpredict(测试标签,测试数据,训练的模型); 原文参考:http://blog.csdn.net/carson2005/art ...
随机推荐
- TPO-19 C2 Cafeteria's Food Policy
TPO-19 C2 Cafeteria's Food Policy 第 1 段 1.Listen to a conversation between a student and the directo ...
- 【CodeForces-1041C】Coffee Break(二分解决关于set,pair,upper_bound用法)
//题意:一个的工作时间是m分钟. // 在特定的时间和咖啡 n a1,a2....an,, ai代表的是每个咖啡要在一天中对应的时间点喝掉 // 每一次喝咖啡的时间为1分钟 // 必须在一天中的ai ...
- Spring Boot之拦截器与过滤器(完整版)
作者:liuxiaopeng 链接:http://www.cnblogs.com/paddix 作者:蓝精灵lx原文:https://blog.csdn.net/liuxiao723846/artic ...
- SMR解析
SMR描述 SMR(Shingled Magnetic Recording)叠瓦式磁记录盘是一种采用新型磁存储技术的高容量磁盘.SMR盘将盘片上的数据磁道部分重叠,就像屋顶上的瓦片一样,这种技术被称为 ...
- Extreme Learning Machine 翻译
本文是作者这几天翻译的一篇经典的ELM文章,是第一稿,所以有很多错误以及不足之处. 另外由于此编辑器不支持MathType所以好多公式没有显示出来,原稿是word文档. 联系:250101249@qq ...
- jdk8 Optional使用详解
思考: 调用一个方法得到了返回值却不能直接将返回值作为参数去调用别的方法. 原来解决方案: 我们首先要判断这个返回值是否为null,只有在非空的前提下才能将其作为其他方法的参数.这正是一些类似Guav ...
- +new Date()的用法
var s=+newDate(); var s=+newDate(); 解释如下:=+是不存在的; +new Date()是一个东西; +相当于.valueOf(); 看到回复补充一下.getTi ...
- Redux和React-Redux的实现(一):Redux的实现和context
react使用redux做状态管理,实现多个组件之间的信息共享,解决了父子组件.兄弟组件之间的复杂通信问题.vue有vuex,总之是一种flux的思想.react提供了react-redux这个库,一 ...
- 树莓派 Raspberry-Pi 折腾系列:系统安装及一些必要的配置
入手树莓派将近一个月了,很折腾,许多资源不好找,也很乱.简单整理一下自己用到的东西,方便以后自己或别人继续折腾. 0. 操作系统下载 树莓派官方 Raspbian 系统下载:http://www.ra ...
- 20162314 《Program Design & Data Structures》Learning Summary Of The Second Week
20162314 2017-2018-1 <Program Design & Data Structures>Learning Summary Of The Second Week ...