题意

题目链接

分析

  • 首先明确 \(xor\) 运算和 \(\rm gcd\) 没有联系!

  • 注意到一个数字取 \(\rm gcd\) 且保证每次取 \(\rm gcd\) 值都会变小的话,最多取 \(\log\) 次。

    比较显然,如果每次都变小的话至少都除以了因子 \(2\) ,变为原来的二分之一。

  • 所以考虑一个暴力分块,记录每一块的 \(\rm gcd\) G[i]、异或和X[i]、前缀异或和。

  • 如果 \({\rm gcd}(lastgcd,G[i])=lastgcd\) ,那么直接在该块记录的前缀异或和中查找\(\frac{val}{lastgcd}\ {\rm xor}\ lastxorv\) 的最小的值即可。

  • 总时间复杂度为 \(O(n\log n \sqrt n)\)。

重点:\(\rm gcd\) 的取值次数最多有 \(\log\) 次变化!

代码

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
typedef pair<LL,int> pii;
const int N=1e5 + 7;
int n,sz;
int bl[N],a[N],G[N],X[N];
char s[N];
vector<pii>v[400];
int gcd(int a,int b){
return !b?a:gcd(b,a%b);
}
void build(int z){
X[z]=0;v[z].clear();
rep(i, sz*(z-1)+1, min(sz*z,n)){
v[z].pb(make_pair(X[z]^=a[i],i));
G[z]=i==(sz*(z-1)+1)?a[i]:gcd(G[z],a[i]);
}
sort(v[z].begin(),v[z].end());
}
int query(LL val){
int lastg=a[1],lastx=0;
rep(i,1,sz){
lastg=i==1?a[1]:gcd(lastg,a[i]),lastx^=a[i];
if(1ll*lastg*lastx==val) return i;
}
rep(z,2,bl[n]){
if(gcd(lastg,G[z])==lastg){
LL to=(val/lastg)^lastx;lastx^=X[z];
if(val%lastg) continue;
int x=lower_bound(v[z].begin(),v[z].end(),make_pair(to,0))-v[z].begin();
if(x==v[z].size()) continue;
pii tmp=v[z][x];
if(tmp.first==to) return tmp.second;
}
else rep(i,sz*(z-1)+1,min(sz*z,n)){
lastg=gcd(lastg,a[i]),lastx^=a[i];
if(1ll*lastg*lastx==val) return i;
}
}
return 0;
}
int main(){
n=gi();sz=sqrt(n);
rep(i,1,n) a[i]=gi(),bl[i]=(i-1)/sz+1;
rep(z,1,bl[n]) build(z); int q=gi();
int x;LL y;
rep(i,1,q){
scanf("%s",s);
if(s[0]=='M') {
x=gi()+1,y=gi();
a[x]=y,build(bl[x]);
}else{
scanf("%lld",&y);
int res=query(y)-1;
if(res==-1) puts("no");
else printf("%d\n",res);
}
}
return 0;
}

[BZOJ4028][HAOI2015]公约数数列[分块+分析暴力]的更多相关文章

  1. [BZOJ4028][HEOI2015]公约数数列(分块)

    先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...

  2. 【BZOJ4028】[HEOI2015]公约数数列 分块

    [BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...

  3. BZOJ 4028: [HEOI2015]公约数数列 分块

    4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...

  4. BZOJ4028 HEOI2015公约数数列(分块)

    前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...

  5. bzoj4028: [HEOI2015]公约数数列

    Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...

  6. 【BZOJ4028】[HEOI2015]公约数数列(分块)

    [BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...

  7. BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec   ...

  8. 数列分块总结——题目总版(hzwer分块九题及其他题目)(分块)

    闲话 莫队算法似乎还是需要一点分块思想的......于是我就先来搞分块啦! 膜拜hzwer学长神犇%%%Orz 这九道题,每一道都堪称经典,强力打Call!点这里进入 算法简述 每一次考试被炸得体无完 ...

  9. 数列分块入门九题(三):LOJ6283~6285

    Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...

随机推荐

  1. swift知识点 [1]

    swift知识点 [1] 循环遍历元素 三目运算符用途 Optional 与 ImplicitlyUnwrappedOptional 以及常规类型数据 is 的用法

  2. UNIX高级环境编程(5)Files And Directories - 文件相关时间,目录文件相关操作

     1 File Times 每个文件会维护三个时间字段,每个字段代表的时间都不同.如下表所示: 字段说明: st_mtim(the modification time)记录了文件内容最后一次被修改的时 ...

  3. Ogre学习教程:Ogre1.8.1+VS2010环境配置2(转)

    之前按照前面一篇文章提到的部署了ogre1.9,后来查询资料,有的提到关于vs2010还是安装ogre1.8比较稳定,由于是小白,又比对着几篇文章重新配置了一遍. 从一开始的什么都不会,到现在能知道每 ...

  4. git五分钟教程

    使用Git前,需要先建立一个仓库(repository).您可以使用一个已经存在的目录作为Git仓库或创建一个空目录. 使用您当前目录作为Git仓库,我们只需使它初始化. git init 使用我们指 ...

  5. zabbix3.4 修改监控范围

    需求:一段时间内不监控主机的流量(不告警!!!)

  6. 如何从Microsoft web platform installer取得离线安装包

    有一架visual studio 2012的开发环境A由于某种原因无法链接internet, 于是乎安装officetoolsforvisual2012就有问题了. 从微软的官网上只可以下载 offi ...

  7. Upgrade Oracle Database 12c Release 2(12.2) RAC on RHEL7.3 with RU

    Upgrade Oracle Database 12c Release 2(12.2) RAC on RHEL7.3 -- [ RU: 26610291 (GRID INFRASTRUCTURE RE ...

  8. 《Java程序设计》第12周课堂实践总结

    <Java程序设计>第12周课堂实践总结 实践一 教材代码检查-p98 要求 修改教材P98 Score2.java, 让执行结果数组填充是自己的学号: 提交在IDEA或命令行中运行结查截 ...

  9. 鴻雁 Anser cygnoides

    鴻雁 Anser cygnoides,其中 Anser 是屬名.雁屬的模式種是 Anser anser 灰雁,在中國也有分佈,但不如鴻雁和中國人關係密切.中國人所說的「大雁」一般指鴻雁,偶爾指灰雁或是 ...

  10. 关于VS2010 C#使用DirectX的问题[英]

    转载的,就不翻译了…微软把精力放到xna去了.所以推荐大家用XNA,如果非要用托管的DirectX也可以,只不过版本一直是2006年的了. 具体方法: 安装SDK之后 他默认的位置在C:\WINDOW ...