【CS231N】7、卷积神经网络
一、疑问
1. assignments2
- 在代码文件FullyConnectedNets.ipynd 中,有代码如下:
# Test the affine_forward function
num_inputs = 2
input_shape = (4, 5, 6)
output_dim = 3
input_size = num_inputs * np.prod(input_shape)
weight_size = output_dim * np.prod(input_shape)
x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape)
w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape), output_dim)
b = np.linspace(-0.3, 0.1, num=output_dim)
out, _ = affine_forward(x, w, b)
correct_out = np.array([[ 1.49834967, 1.70660132, 1.91485297],
[ 3.25553199, 3.5141327, 3.77273342]])
# Compare your output with ours. The error should be around 1e-9.
print 'Testing affine_forward function:'
print 'difference: ', rel_error(out, correct_out)
此处用np.prod和 np.linspace等一系列函数初始化权重w和x,与之前直接用np.random等函数想比略显复杂,如此初始化的好处是什么?
**A: **在这个代码模块里,最主要是为了测试前向传播函数是否实现正确,所以需要固定的权重和数据来得出结果,以和函数的输出进行对比。而之前随机生成的数据输出结果也是随机的,无法用于判定实现的前向传播函数是否正确。
- 当用多层FC网络过拟合50个样本时,如果网络层数越深,随机初始化权重时,所用的weight_scale应当越大点。
二、知识点
1. im2col操作
用矩阵乘法实现:卷积运算本质上就是在滤波器和输入数据的局部区域间做点积。卷积层的常用实现方式就是利用这一点,将卷积层的前向传播变成一个巨大的矩阵乘法:
- 输入图像的局部区域被im2col操作拉伸为列。比如,如果输入是[227x227x3],要与尺寸为11x11x3的滤波器以步长为4进行卷积,就取输入中的[11x11x3]数据块,然后将其拉伸为长度为11x11x3=363的列向量。重复进行这一过程,因为步长为4,所以输出的宽高为(227-11)/4+1=55,所以得到im2col操作的输出矩阵X_col的尺寸是[363x3025],其中每列是拉伸的感受野,共有55x55=3,025个。注意因为感受野之间有重叠,所以输入数据体中的数字在不同的列中可能有重复。
- 卷积层的权重也同样被拉伸成行。举例,如果有96个尺寸为[11x11x3]的滤波器,就生成一个矩阵W_row,尺寸为[96x363]。
- 现在卷积的结果和进行一个大矩阵乘np.dot(W_row, X_col)是等价的了,能得到每个滤波器和每个感受野间的点积。在我们的例子中,这个操作的输出是[96x3025],给出了每个滤波器在每个位置的点积输出。
- 结果最后必须被重新变为合理的输出尺寸[55x55x96]。
这个方法的缺点就是占用内存太多,因为在输入数据体中的某些值在X_col中被复制了多次。但是,其优点是矩阵乘法有非常多的高效实现方式,我们都可以使用(比如常用的BLAS API)。还有,同样的im2col思路可以用在汇聚操作中。
三、归一化层(Batch normalization)
**Q: **在神经网络训练开始前,都要对输入数据做一个归一化处理,那为什么需要归一化呢?
**A: **神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低;另外一方面,一旦每批训练数据的分布各不相同(batch 梯度下降),那么网络就要在每次迭代都去学习适应不同的分布,这样将会大大降低网络的训练速度,这也正是为什么我们需要对数据都要做一个归一化预处理的原因。
1. 定义
批量归一化。让激活数据在训练开始前通过一个网络,网络处理数据使其服从标准高斯分布。使用了批量归一化的网络对于不好的初始值有更强的鲁棒性。
2. 优点
- BN解决了反向传播过程中的梯度问题(梯度消失和爆炸),同时使得不同scale的 整体更新步调更一致。在神经网络训练时遇到收敛速度很慢,或梯度爆炸等无法训练的状况时可以尝试BN来解决。另外,在一般使用情况下也可以加入BN来加快训练速度,提高模型精度。
- 减少坏初始化的影响;
- 加快模型的收敛速度;
- 可以用大些的学习率
- 能有效地防止过拟合。
3. 前向传播过程公式
4. 反向传播求导公式
5. 代码
sample_mean = K.mean(X, axis=-1, keepdims=True)#计算均值
sample_var = K.std(X, axis=-1, keepdims=True)#计算标准差
X_normed = (X - sample_mean) / (sample_var + self.epsilon)#归一化
out = self.gamma * X_normed + self.beta#重构变换
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
out = self.gamma * X_normed + self.beta 这个操作为“scale and shift”操作。为了让因训练所需而“刻意”加入的BN能够有可能还原最初的输入(即当),从而保证整个network的capacity。(实际上BN可以看作是在原模型上加入的“新操作”,这个新操作很大可能会改变某层原来的输入。当然也可能不改变,不改变的时候就是“还原原来输入”。如此一来,既可以改变同时也可以保持原输入,那么模型的容纳能力(capacity)就提升了。)
当引入BN层,原始的数据分布可能会因此遭到破坏,从而导致网络的loss变大,则在反向传播中,可以使用梯度更新规则对参数gamma和beta进行更新,从而接用“scale and shift”操作,以求可能保持原输入的部分特征。
我们训练时使用一个minibatch的数据,因此可以计算均值和方差,但是预测时一次只有一个数据,所以均值方差都是0,那么BN层什么也不干,原封不动的输出。这肯定会用问题,因为模型训练时是进过处理的,但是测试时又没有,那么结果肯定不对。
解决的方法是使用训练的所有数据,也就是所谓的population上的统计。不过这需要训练完成之后在多出一个步骤。一种常见的办法就是基于momentum的指数衰减,这和低通滤波器类似。每次更新时把之前的值衰减一点点(乘以一个momentum,一般很大,如0.9,0.99),然后把当前的值加一点点进去(1-momentum)。
【CS231N】7、卷积神经网络的更多相关文章
- 『cs231n』卷积神经网络的可视化与进一步理解
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...
- 【cs231n】卷积神经网络
较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...
- 『cs231n』卷积神经网络工程实践技巧_下
概述 计算加速 方法一: 由于计算机计算矩阵乘法速度非常快,所以这是一个虽然提高内存消耗但是计算速度显著上升的方法,把feature map中的感受野(包含重叠的部分,所以会加大内存消耗)和卷积核全部 ...
- 『cs231n』卷积神经网络工程实践技巧_上
概述 数据增强 思路:在训练的时候引入干扰,在测试的时候避免干扰. 翻转图片增强数据. 随机裁切图片后调整大小用于训练,测试时先图像金字塔制作不同尺寸,然后对每个尺寸在固定位置裁切固定大小进入训练,最 ...
- CS231n课程笔记翻译9:卷积神经网络笔记
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...
- Stanford CS231n实践笔记(课时14卷积神经网络详解 上)
本课我们主要来研究一个"浏览器中的卷积神经网络" 这只是一个展示项目,但是能够帮助直观地看到一些东西 地址:https://cs.stanford.edu/people/karpa ...
- CNN卷积神经网络在自然语言处理的应用
摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convol ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 卷积神经网络(CNN)模型结构
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...
- 卷积神经网络(CNN)前向传播算法
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...
随机推荐
- 五、Delphi10.3通过REST单元使类和JSON数据互相转换
一.我们定义一个简单的类 TPeople = class private FName: string; FScore: Integer; FAge: TDateTime; public propert ...
- hadoop体系架构
1.1 Hadoop 概念:hadoop是一个由Apache基金会所开发的分布式系统基础架构.是根据google发表的GFS(Google File System)论文产生过来的. ...
- CTF-Bugku-分析-信息提取
CTF-Bugku-分析-信息提取 最近刷题的时候看到了这道比较有趣的题.而且网上也没找到wp,所以分享一下我的思路. 信息提取: 题目链接:http://ctf.bugku.com/challeng ...
- [二进制trie][贪心]CSUOJ1216异或最大值
题目传送门 过了好久,终于重新开始写博客了... 这是一道二进制trie树的模板题. 二进制trie树,理解一下就是一颗二叉树,左右儿子为0或1. 然后每插入一个数就进行一次Find操作. Find: ...
- [2016北京集训试题6]网络战争-[最小割树(网络流)+kd-tree+倍增]
Description A 联邦国有 N 个州,每个州内部都有一个网络系统,有若干条网络线路,连接各个 州内部的城市. 由于 A 国的州与州之间的关系不是太好,每个州都只有首府建立了到别的州的网络.具 ...
- getopt例子
(本例基于win7 + python3.4) import getopt, sys ''' getopt 模块专门用来处理命令行参数 函数 getopt(args, shortopts, longop ...
- springboot之assembly的文件配置
一.在使用springboot框架的时候,存在一个问题.就是我们配置yaml文件,需要单独提出来做参数修改.当然这个是可以通过spring.profiles.active的方式来配置dev,prod等 ...
- GNS3 jungle newsfeed 隐藏
windows 7 windows 8.1 1.开始---运行 输入(没有引号):“%appdata%” 2.修改---GNS3/gns3_gui.ini 的两行参数 "default_lo ...
- postMan测试Controller接口
1.介绍 Postman是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件. 2.安装 Postman 4.1.2 下载地址: http://files.cnblogs.com/file ...
- 使用Serilog输出到ES(使用笔记)
第一步:安装Serilog 使用NuGet包安装以下组件: Serilog.AspNetCoreSerilog.Settings.ConfigurationSerilog.Sinks.ConsoleS ...