【LOJ】#2446. 「NOI2011」 NOI 嘉年华
题解
一道神奇的dp
我们发现关于两个东西的记录很难办,但是我们发现在固定时间区间内,如果A场地举办的活动数是一定的,那么B场地肯定举办的活动越多越好
我们预处理一个\(num[i][j]\)表示时间区间\([i,j]\)有多少个活动会在这个区间里举办(被区间完整包含)
\(pre[i][x]\)表示\([1,i]\)的时间内,A场地举办了x个活动,B场地最多能举办多少活动
这是一个\(n^3\)的dp
转移是
\(pre[i][x] = min(pre[j][x - num[i + 1][j]],pre[j][x] + num[i + 1][j])\)就是枚举一段区间放在A场地还是B场地
第一个答案就是对于每个i的\(min(pre[tot][x],i)\)的最大值
后面的答案相当于处理出\(f[i][j]\)这段区间被A占用,活动最少场地值最大是多少
然后对于\(f[i][j]\)统计成所有\(s <= i && j <= t\)的\(f[s][t]\)的最大值
\(f[i][j] = min(pre[i - 1][x] + suf[j + 1][y],x + y + num[i][j])\)
这是\(n^4\)的
但是如果从小到大枚举x,y的最优解是递减的,就是\(n^3\)的
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define MAXN 100005
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,val[505],tot,pre[405][205],suf[405][205],num[405][405],f[405][405];
pii S[205];
void Init() {
read(N);
int x,y;
for(int i = 1 ; i <= N ; ++i) {
read(x);read(y);y = x + y - 1;
S[i] = mp(x,y);
val[++tot] = x;val[++tot] = y;
}
sort(val + 1,val + tot + 1);
tot = unique(val + 1,val + tot + 1) - val - 1;
for(int i = 1 ; i <= N ; ++i) {
S[i].fi = lower_bound(val + 1,val + tot + 1,S[i].fi) - val;
S[i].se = lower_bound(val + 1,val + tot + 1,S[i].se) - val;
}
for(int i = 1 ; i <= tot ; ++i) {
for(int j = i ; j <= tot ; ++j) {
for(int k = 1 ; k <= N ; ++k) {
if(S[k].fi >= i && S[k].se <= j) num[i][j]++;
}
}
}
}
void Solve() {
for(int k = 0 ; k <= tot + 1; ++k) {
for(int i = 0 ; i <= N ; ++i) {
pre[k][i] = suf[k][i] = -1000000000;
}
}
pre[0][0] = 0;
for(int k = 1 ; k <= tot ; ++k) {
for(int j = 0 ; j < k ; ++j) {
for(int i = 0 ; i <= N ; ++i) {
pre[k][i] = max(pre[j][i] + num[j + 1][k],pre[k][i]);
if(i >= num[j + 1][k]) pre[k][i] = max(pre[k][i],pre[j][i - num[j + 1][k]]);
}
}
}
suf[tot + 1][0] = 0;
for(int k = tot ; k >= 1 ; --k) {
for(int j = tot + 1 ; j > k ; --j) {
for(int i = 0 ; i <= N ; ++i) {
suf[k][i] = max(suf[k][i],suf[j][i] + num[k][j - 1]);
if(i >= num[k][j - 1]) suf[k][i] = max(suf[k][i],suf[j][i - num[k][j - 1]]);
}
}
}
int ans = 0;
for(int i = 1 ; i <= N ; ++i) {
ans = max(ans,min(i,pre[tot][i]));
}
out(ans);enter;
for(int i = 1 ; i <= tot ; ++i) {
for(int j = i ; j <= tot ; ++j) {
int y = N;
for(int x = 0 ; x <= N ; ++x) {
if(pre[i - 1][x] < 0) break;
while(y > 0 && min(x + y + num[i][j],pre[i - 1][x] + suf[j + 1][y])
<= min(x + y - 1 + num[i][j],pre[i - 1][x] + suf[j + 1][y - 1])) --y;
f[i][j] = max(f[i][j],min(x + y + num[i][j],pre[i - 1][x] + suf[j + 1][y]));
}
}
}
for(int i = 1 ; i <= tot ; ++i) {
for(int j = tot ; j >= 1 ; --j) {
f[i][j] = max(f[i][j + 1],f[i][j]);
}
}
for(int i = 1 ; i <= tot ; ++i) {
for(int j = 1 ; j <= tot ; ++j) {
f[i][j] = max(f[i][j],f[i - 1][j]);
}
}
for(int i = 1 ; i <= N ; ++i) {
out(f[S[i].fi][S[i].se]);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【LOJ】#2446. 「NOI2011」 NOI 嘉年华的更多相关文章
- LOJ#2444. 「NOI2011」阿狸的打字机
题目描述 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B . P 两个字母. 经阿狸研究发现,这个打字机是 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- python中__init__()、__new__()、__call__()、__del__()用法
关于__new__()的用法参考: http://www.myhack58.com/Article/68/2014/48183.htm 正文: 一.__new__()的用法: __new__()是在新 ...
- JVM 体系结构介绍
JVM是Java的一大利器.它可以屏蔽各个计算机平台相关软件和硬件之间的差异.把平台相关的耦合统一工作交由JVM的实现者. JVM(Java 虚拟机),它通过模拟一个计算机来达到一个计算机所拥有的计算 ...
- UITableViewCell在非Nib及Cell重用下设置CellStyle
在UITableViewController(实现了UITableViewDataSource)下需要实现 - (UITableViewCell *)tableView:(UITableView *) ...
- classpath 及读取 properties 文件
java代码中获取项目的静态文件,如获取 properties 文件内容是必不可少的. Spring 下只需要通过 @Value 获取配置文件值 <!-- 资源文件--> <util ...
- NCPC2016-A-ArtWork
题目描述 A template for an artwork is a white grid of n × m squares. The artwork will be created by pain ...
- bzoj千题计划141:bzoj3532: [Sdoi2014]Lis
http://www.lydsy.com/JudgeOnline/problem.php?id=3532 如果没有字典序的限制,那么DP拆点最小割即可 加上字典序的限制: 按c从小到大枚举最小割边集中 ...
- python核心编程笔记——Chapter7
Chapter7.映像和集合类型 最近临到期末,真的被各种复习,各种大作业缠住,想想已经荒废了python的学习1个月了.现在失去了昔日对python的触觉和要写简洁优雅代码的感觉,所以临到期末毅然继 ...
- 连接mysql提示Establishing SSL connection without server's identity verification is not recommended错误
Establishing SSL connection without server's identity verification is not recommended. According to ...
- 【leetcode 简单】 第七十题 有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的一个字母异位词. 示例 1: 输入: s = "anagram", t = "nagaram" ...
- F - Number of Connected Components UVALive - 7638 (并查集 + 思维)
题目链接:https://cn.vjudge.net/contest/275589#problem/F 题目大意:就是给你n个数,如果说两个数之间的gcd!=1,那么就将这两个点连起来,问你最终这些点 ...