【题目】C - Remainder Game

【题意】给定n个数字的序列A,每次可以选择一个数字k并选择一些数字对k取模,花费2^k的代价。要求最终变成序列B,求最小代价或无解。n<=50,0<=ai,bi<=50。

【题解】首先需要一些性质:

1.一个数字取模k后,再取模>=k的数字就没有意义,因此操作顺序一定是k从大到小,并且每个k只用一次。

2.由于$2^k>2^{k-1}+2^{k-2}+...+2^0$,所以代价最小的序列一定是字典序最小的。

故现在要求字典序最小的严格递减的操作序列k,满足最终变成序列B。(到这里之后,LLQ处理出所有路径然后暴力从大到小推过去了……)

现在从大到小考虑每个k是否必要,如果1~k-1和之前必要的数字形成的集合可以使A变到B,那么k就不是必要的,否则是必要的。

判断是否能到达只需要记f[x]表示x是否能到达,枚举每个数字x,使f[x]=1后从大到小枚举转移。

复杂度O(n^4)。

【Atcoder】AGC022 C - Remainder Game 搜索的更多相关文章

  1. Atcoder F - Mirrored(思维+搜索)

    题目链接:http://arc075.contest.atcoder.jp/tasks/arc075_d 题意:求rev(N)=N+D的个数,rev表示取反.例如rev(123)=321 题解:具体看 ...

  2. HDU 1104 Remainder( BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  3. HDU 1104 Remainder (BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  4. AtCoder AGC022C Remainder Game (图论)

    题目链接 https://atcoder.jp/contests/agc022/tasks/agc022_c 题解 大水题一道 就他给的这个代价,猜都能猜到每个数只能用一次 仔细想想,我们肯定是按顺序 ...

  5. Atcoder Grand Contest 020 E - Encoding Subsets(记忆化搜索+复杂度分析)

    Atcoder 题面传送门 & 洛谷题面传送门 首先先考虑如果没有什么子集的限制怎样计算方案数.明显就是一个区间 \(dp\),这个恰好一年前就做过类似的题目了.我们设 \(f_{l,r}\) ...

  6. 【AtCoder】AGC022

    A - Diverse Word 不到26位就加上一个最小的 到26位了就搜一下,最多回溯就一次,所以复杂度不大 #include <iostream> #include <cstd ...

  7. 2018.09.18 atcoder Many Formulas(搜索)

    传送门 感觉自己搜索能力退化了,这种弱智搜索写了整整5min,这样下去比赛会凉的. 看来得多练练题了. 代码: #include<bits/stdc++.h> #define ll lon ...

  8. AtCoder Beginner Contest 133-C - Remainder Minimization 2019

    https://atcoder.jp/contests/abc133/tasks/abc133_c 思路:由于L,R区间太大,所以不能暴力枚举.由于求(i*j)%2019的最小值,那么2019的倍数对 ...

  9. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

随机推荐

  1. Snapseed玩出新高度,分分钟让你成p图大神! 转

    (,,・∀・)ノ゛嗨呀 小阔爱们! 不知道大家记不记得~ 上周我们的副条发了一篇: <看过他的照片,我才知道什么是创意摄影> 德国仅22岁超现实主义艺术家Justin Peters 创造了 ...

  2. Delphi定位TDataSet数据集最后一条记录

    dst_temp.last ;//最后一条dst_temp.first ;//第一条dst_temp.next ;//下一条dst_temp.prior;//上一条

  3. 第195天:js---函数对象详解(call、apply)

    一.call 1.call供爷法则 // 对象1 var myclass={ getAllStudentsNumbers:function(num1,num2){ return num1+num2; ...

  4. 第190天:js---String常用属性和方法(最全)

    String常用属性和方法 一.string对象构造函数 /*string对象构造函数*/ console.log('字符串即对象');//字符串即对象 //传统方式 - 背后会自动将其转换成对象 / ...

  5. nvidia 无显示选项怎么设置全屏游戏

    转自:2楼   http://nbbbs.zol.com.cn/41/218_408871.html 网上搜的方法: 1.按键盘上那个windows键+R,输入regedit 2.然后就是下面的步骤了 ...

  6. 【纪念】NOIP2018前夕——一些想说的话

    刚刚复习了一下相关的内容,决定一会儿就洗洗睡了.在睡觉之前,决定写点东西. 有的时候真的很迷茫,选择了一条超过自己能力范围的路,每天挣扎在各种各样难题的面前,文化成绩一落千丈……在从前觉得这一切都是有 ...

  7. 洛谷 P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  8. yd的拔钉子之路之 POI 2017

    写在前面的一些话 如果我NOIP没退役,这大概会写成一个系列吧,所以这算是系列的开始,要写一些奇怪的东西? 首先解释下什么叫“拔钉子”,其实就是在钉子上做题嘛......至于钉子具体是个什么东西就当面 ...

  9. SP1487 PT07J - Query on a tree III (主席树)

    SP1487 PT07J - Query on a tree III 题意翻译 你被给定一棵带点权的n个点的有根数,点从1到n编号. 定义查询 query(x,k): 寻找以x为根的k大点的编号(从小 ...

  10. springboot读取自己定义的配置文件的方式以及使用joda_time来处理时间日期

    总的来说呢,有两种方式,一种是原始的方式,即使用PropertiesUtils来读取配置文件. 第二种就是使用springboot的注解的方式来读取配置文件. 1.原始方式处理属性和时间日期: 工具类 ...