题目链接

Problem Description

The center coordinate of the circle C is O, the coordinate of O is (0,0) , and the radius is r.

P and Q are two points not outside the circle, and PO = QO.

You need to find a point D on the circle, which makes PD+QD minimum.

Output minimum distance sum.

Input

The first line of the input gives the number of test cases T; T test cases follow.

Each case begins with one line with r : the radius of the circle C.

Next two line each line contains two integers x , y denotes the coordinate of P and Q.

Limits

T≤500000

−100≤x,y≤100

1≤r≤100

Output

For each case output one line denotes the answer.

The answer will be checked correct if its absolute or relative error doesn't exceed 10−6.

Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if |a−b|max(1,b)≤10−6.

Sample Input

4

4

4 0

0 4

4

0 3

3 0

4

0 2

2 0

4

0 1

1 0

Sample Output

5.6568543

5.6568543

5.8945030

6.7359174

题意:

给定一个圆心在坐标原点的圆以及该圆的半径,然后给出两个到该圆的圆心等长的非圆外点(点既可以在圆内,也可以在圆上),让从圆上找一点使其到两点的距离最短。

分析:

首先我们考虑两种最特殊的情况:

1.两个点共位置,这种情况也是完全满足题上给出的条件的,这样的话最短距离就是圆半径减去圆心到改点的距离,因为要看做两个点所以还得乘以2.

2.两个点在圆上,这样的话最短距离就是两点之间的距离。

考虑完这两种特殊的情况之后我么看一下一般的情况。

首先介绍一下反演点的定义:

如果圆内有一点P,过圆心做一条与P的连线,将这条线延长,使得在圆外的这条线上有一点P',与P关于该圆对称。

我们即可得出结论OP×OP'=r×r(r为该圆的半径)

然后我们就可以将求DP+DQ转换为求DP' +DQ',

现在的问题在于何种情况下这个点都是在中垂线上的这个点吗?

答案当然不是,我们通过连接两个反演点就可以发现,两个反演点的连线有可能与圆相交,相切的时候可以很简单的确定切点即为所求的点,相离也是如此,问题是相交的时候这个点应该如何确定呢?

相交的时候P、Q、P'、Q'可以构成一个等腰梯形,梯形与圆有一条腰的平分线,这条平分线就是我们要找的最短的距离,当然梯形与圆的交点不是我们要找的点,我们只是通过等量的转换将它转换过来而已。

后面在求DP'的长度的时候,应用到一些有关椭圆的知识,P’Q'就是椭圆的长轴,D到椭圆中心的连线即为短半轴,这样的话DP’即为c,可以简单的求得,最终求出答案。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
const double esp=0.000000005;
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
double r,x[2],y[2];
scanf("%lf%lf%lf%lf%lf",&r,&x[0],&y[0],&x[1],&y[1]);
double op=dis(0.0,0.0,x[0],y[0]);
if(x[0]==x[1]&&y[0]==y[1])
{
printf("%.7lf\n",2.0*(r-op));
continue;
}
if(op==r)
{
printf("%.7lf\n",dis(x[0],y[0],x[1],y[1]));
continue;
}
double o=acos((x[0]*x[1]+y[0]*y[1])/op/op)/2.0;///op与od的夹角
double d=r*r/op;///d表示的是圆心到反演点的距离
double h=d*cos(o);/// 两反演点构成的直线的距离
if(h<=r)
{
printf("%.7lf\n",2.0*r*sin(o));
continue;
}
double b=h-r,a=d*sin(o);
printf("%.7lf\n",op*sqrt(a*a+b*b)*2.0/r);
}
return 0;
}

2017ACM暑期多校联合训练 - Team 6 1002 HDU 6097 Mindis (数学)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  2. 2017ACM暑期多校联合训练 - Team 7 1002 HDU 6121 Build a tree (深搜+思维)

    题目链接 Problem Description HazelFan wants to build a rooted tree. The tree has n nodes labeled 0 to n− ...

  3. 2017ACM暑期多校联合训练 - Team 1 1002 HDU 6034 Balala Power! (字符串处理)

    题目链接 Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He ...

  4. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  5. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  6. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  7. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

  8. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  9. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

随机推荐

  1. C++变量内存分配及类型修饰符

    前言 了解C++程序内存分配,有助于深刻理解变量的初始化值以及其生存周期.另外,变量类型修饰符也会影响到变量的初始化值及其生存周期.掌握了不同类型变量的初始化值及其生存周期,能够让我们设计程序时定义变 ...

  2. larave5.6 引入自定义函数库时,报错不能重复定义

    方法一:使用function_exists判断 方法二:使用命名空间 namespace test; function test(){ echo 'test/test'; } namespace te ...

  3. Spring异步事件

    1.发布事件 @Data public class CustomEvent extends ApplicationEvent implements Serializable { private Boo ...

  4. 【ABP】Abp的AspNetZero5.0版本无法使用ctrl+f5调式

    原文:http://www.cnblogs.com/94pm/p/7942483.html AspNetZero是基于Abp框架开发的商业程序,最近从Abp交流群中得知5.0版本开始加入了防盗版的功能 ...

  5. 如何在VScode中添加代码片段

    拿 VUE 举例,新建 VUE 文件,输入前缀,出现代码段 文件 --->  首选项 ---> 用户代码片段  在输入框中输入 vue ,找到 vue.json ,然后在 vue.json ...

  6. @Retention(保留) 此注解用于运行时候(反射)时候使用 如果不使用的话 在反射时候无法获取到注解的值

    @Retention(保留) 此注解用于运行时候(反射)时候使用 如果不使用的话 在反射时候无法获取到注解的值

  7. 树状数组模板(pascal) 洛谷P3374 【模板】树状数组1

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  8. python 内置函数02

    1. lambda 匿名函数 lambda 参数: 返回值 #常规计算两个数相加的函数 def func(a,b): return a+b print(func(1,9)) #lambda函数 my_ ...

  9. MySQL慢查询日志ES索引模板

    { "template": "mysql-slow-log-*", "settings": { "index": { & ...

  10. mysql数据库----python操作mysql ------pymysql和SQLAchemy

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy 一.pymysql pymsql是Python中操作MySQL的模块,其使用方法和MySQ ...