HDU 2159 FATE (dp)
Problem Description
最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务。久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完这最后一级。现在的问题是,xhd升掉最后一级还需n的经验值,xhd还留有m的忍耐度,每杀一个怪xhd会得到相应的经验,并减掉相应的忍耐度。当忍耐度降到0或者0以下时,xhd就不会玩这游戏。xhd还说了他最多只杀s只怪。请问他能升掉这最后一级吗?
Input
输入数据有多组,对于每组数据第一行输入n,m,k,s(0 < n,m,k,s < 100)四个正整数。分别表示还需的经验值,保留的忍耐度,怪的种数和最多的杀怪数。接下来输入k行数据。每行数据输入两个正整数a,b(0 < a,b < 20);分别表示杀掉一只这种怪xhd会得到的经验值和会减掉的忍耐度。(每种怪都有无数个)
Output
输出升完这级还能保留的最大忍耐度,如果无法升完这级输出-1。
Sample Input
10 10 1 10
1 1
10 10 1 9
1 1
9 10 2 10
1 1
2 2
Sample Output
0
-1
1
分析:
从题目可以看出,怪物可以无限刷,那么这就是完全背包问题。因为题目中涉及到两个条件(忍耐度,刷怪数量),可以看出这是一个二维费用完全背包题目。
我们应该用一个二维的dp数组存放在一定的(刷怪数量和和忍耐度)的状态,得到的经验是多少。
状态转移方程:dp[j][z] = max(dp[j - 1][z - b[i]] + a[i], dp[j][z]);(j为刷怪数量,z为忍耐度,b[i]为第i个怪消耗掉的忍耐度,a[i]代表第i个怪的得到的经验)。最后注意是完全背包就可以了。
代码:
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 1e2 + 10;
int dp[maxn][maxn];
int a[maxn], b[maxn];
int main()
{
int n, m, k, s;
while(~scanf("%d%d%d%d", &n, &m, &k, &s))
{
for(int i = 1; i <= k; ++ i)
{
scanf("%d%d", &a[i], &b[i]);
}
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= k; ++ i)//怪的种类
{
for(int z = b[i]; z <= m; ++ z)//消耗的忍耐(完全背包)
{
for(int j = 1; j <= s; j ++) //打怪的数量 必须从1到s
{
dp[j][z] = max(dp[j - 1][z - b[i]] + a[i], dp[j][z]);
}
}
}
if(dp[s][m] >= n)
{
for(int i = 0; i <= m; ++ i)
{
if(dp[s][i] >= n)
{
printf("%d\n", m - i);
break;
}
}
}
else
{
printf("-1\n");
}
}
return 0;
}
HDU 2159 FATE (dp)的更多相关文章
- HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包)
HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包) 题意分析 与普通的完全背包大同小异,区别就在于多了一个个数限制,那么在普通的完全背包的基础上,增加一维,表示个数.同时for循环 ...
- HDU 2159 FATE(二维费用背包)
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- HDU 2159 FATE 完全背包
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2159 FATE Time Limit: 2000/1000 MS (Java/Others)Memo ...
- HDU 2159 FATE (dp)
FATE Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissi ...
- HDU 2159 FATE (DP 二维费用背包)
题目链接 题意 : 中文题不详述. 思路 : 二维背包,dp[i][h]表示当前忍耐值为i的情况下,杀了h个怪得到的最大经验值,状态转移方程: dp[i][h] = max(dp[i][h],dp[i ...
- HDU - 2159 FATE(二维dp之01背包问题)
题目: 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...
- hdu 2159 FATE(DP)
题意: 小余玩游戏,离最后一级还需n的经验值,但是他已经很厌烦了,还剩下m的忍耐度.每杀一只怪小余会得到相应的经验,同时减掉相应的忍耐度. 当忍耐度降到0或者0以下时,小余就不会再玩这个游戏.小余还说 ...
- HDU 2159 FATE (二维完全背包
FATE http://acm.hdu.edu.cn/showproblem.php?pid=2159 Problem Description 最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备 ...
- hdu 2159 FATE
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2159 思路:二维完全背包,状态转移方程为: f[j][l]=max(f[j][l],f[j-b[i]] ...
随机推荐
- Dsyy的第一篇博文~
2017-08-07 周一 晴热热热热热 咳咳,很多人看到dsyy第一反应是什么意思?当然是大神媛媛!显然不是些(diao)(si)yy.(da)(si)yy...的别义,咋有点此地无银三百两的感 ...
- Centos7更改默认启动桌面(或命令行)模式
centos7以后是这样的,7以前就是别的版本了 1.systemctl get-default命令获取当前模式 2.systemctl set-default graphical.target 修改 ...
- 【Linux】- 六个超赞的字符画生成器
ASCII是一个非常吸引人的字符编码系统,在计算机,通讯设备,以及其他设备中,通过它来用代码表示字符.新生代的人可能会觉得它已经过时了,但是那些熟悉它的人会懂得ASCII是多么的独特.我们在这里为你准 ...
- java & maven pom
java & maven pom https://maven.apache.org/pom.html http://www.tutorialspoint.com/maven/maven_pom ...
- 第192天:js---Date对象属性和方法总结
Date对象构造函数重载方法 一.第一种重载方法---基本 当前时间 //构造函数 - 第一种重载方法:基本 当前时间 console.log('构造函数 - 第一种重载方法:基本 当前时间') da ...
- bzoj1031-字符加密
环的问题,经典方法倍长串,求出后缀数组,扫一次sa,如果sa[i]小于等于n,那么就输出这个字符串结尾的位置(即s[sa[i]+n-1]). 代码 #include<cstdio> #in ...
- 【bzoj5133】[CodePlus2017年12月]白金元首与独舞 并查集+矩阵树定理
题目描述 给定一个 $n\times m$ 的方格图,每个格子有 ↑.↓.←.→,表示从该格子能够走到相邻的哪个格子.有一些格子是空着的,需要填上四者之一,需要满足:最终的方格图中,从任意一个位置出发 ...
- P2774 方格取数问题
题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...
- Splitter Control for Dialog
原文链接地址:https://www.codeproject.com/Articles/595602/Splitter-Control-for-Dialog Introduction Yes, tha ...
- <深入理解计算机系统>第七章读书笔记
第七章读书笔记 链接 链接:将各种代码和数据部分收集起来并组合成为一个单一文件的过程.(这个文件可被加载或拷贝到存储器并执行) 链接可以执行于编译,加载或运行时. 静态链接: 两个主要任务: 1 符号 ...