dp 动规 最佳加法表达式
最佳加法表达式
有一个由1..9组成的数字串.问如果将m个加号插入到这个数字串中,在各种可能形成的表达式中,值最小的那个表达式的值是多少
解题思路
假定数字串长度是n,添完加号后,表达式的最后一个加号添加在第 i 个数字后面,那么整个表达式的最小值,就等于在前 i 个数字中插入 m – 1个加号所能形成的最小值,加上第 i + 1到第 n个数字所组成的数的值(i从1开始算)。
解题思路
设V(m,n)表示在n个数字中插入m个加号所能形成的表达式最小值,那么:
if m = 0,
V(m,n) = n个数字构成的整数
else if n < m + 1
V(m,n) = ∞
else
V(m,n) = Min{ V(m-1,i) + Num(i+1,n) } ( i = m ... n-1)
Num(i,j)表示从第i个数字到第j个数字所组成的数。数字编号从1开始算。此操
作复杂度是O(j-i+1)
总时间复杂度:O(mn 2 )
代码如下: #include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std; int dp[100][200];
char str[500]; //dp[m][n]表示的是示在n个数字中插入m个加号所能形成的表达式最小值 int change(int x,int y)
{
int t=0;
for(int i = x ; i <= y ; i++)
{
t*=10;
t+=(str[i]-'0');
}
return t;
} int main()
{
int n,m;
while(scanf("%d%d",&m,&n)!=EOF)
{
scanf("%s",str+1);
memset(dp,0,sizeof(dp));
for(int i = 1 ; i <= m ; i++)
for(int j = 1 ; j <= n ; j++)//初始化为无穷大
dp[i][j]=99999999;
for(int i = 1 ; i <= n ; i++)//如果m等于0,那么dp就等于从一加到n
dp[0][i]=change(1,i);
for(int i = 1 ; i <= m ; i++)//否则的话就剩第三种情况了
for(int j = i ; j <= n ; j++)
for(int k = i ; k <= j ; k++)
dp[i][j]=min(dp[i][j],dp[i-1][k]+change(k+1,j));//(i-1)~k,k~j(k肯定大于i-1)
printf("%d\n",dp[m][n]);
}
return 0;
}
dp 动规 最佳加法表达式的更多相关文章
- 【OpenJ_Bailian - 4152 】最佳加法表达式(动态规划)
最佳加法表达式 Descriptions: 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放1个加号,最好的摆 ...
- 百练4152:最佳加法表达式(dp+高精度)
描述 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36 输入有不超 ...
- OpenJudge 4152 最佳加法表达式
总时间限制: 1000ms 内存限制: 65536kB 描述 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放 ...
- 关于DP动规
今天学了动规,简单记录一下自己理解了的:(要不俺就忘了) 首先,啥是DP??? 动态规划,其实就是组合子问题的解来解决整个问题的解,由于每个子问题他只判断一次,所以不会重复计算,那就很牛啊!!! 专业 ...
- 【动态规划】最佳加法表达式(百练oj4152)
总时间限制: 1000ms 内存限制: 65536kB 描述 给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值.例如,在1234中摆放 ...
- 最佳加法表达式(dp)
题目描述: 有一个由1..9组成的数字串.问如果将m个加 号插入到这个数字串中,在各种可能形成的 表达式中,值最小的那个表达式的值是多少 (本题只能用于整数) 解题思路: 假定数字串长度是n,添完加号 ...
- 递推,动态规划(DP),字符串处理,最佳加法表达式
看了一些资料,竟然发现连百度文库也有错误的地方,在这里吐槽一下题目大意:http://wenku.baidu.com/link?url=DrUNNm19IqpPNZjKPX4Jg6shJiK_Nho6 ...
- OpenJ_Bailian - 4152 最佳加法表达式 dp
http://bailian.openjudge.cn/practice/4152?lang=en_US 题解 :dp[i][j]代表前i个字符加j个加号可以得到的最小值,于是dp[i+k[j+1]可 ...
- hdu 1114 dp动规 Piggy-Bank
Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
随机推荐
- Spring容器简介
Spring 是面向 Bean 的编程(BOP,Bean Oriented Programming),提供了 IOC 容器通过配置文件或者注解的方式来管理对象之间的依赖关系. 控制反转模式(也称作依赖 ...
- MappedByteBuffer以及ByteBufer的底层原理
最近在用java中的ByteBuffer,一直不明所以,尤其是对MappedByteBuffer使用的内存映射这个概念云里雾里. 于是首先补了物理内存.虚拟内存.页面文件.交换区的只是:小科普——物理 ...
- 【CODEVS】1033 蚯蚓的游戏问题
[算法]网络流-最小费用最大流(费用流) [题解]与方格取数2类似 在S后添加辅助点S_,限流k 每条边不能重复走,限流1 #include<cstdio> #include<alg ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- 脱离MVC使用Razor模板引擎
关于Razor模板引擎 1.简介 模板引擎:Razor.Nveocity.Vtemplate.Razor有VS自动提示.使用起来会方便一点. 但是Razor大多是在MVC下使用的. 那么如何在非MVC ...
- 爬虫--Scrapy之Downloader Middleware
下载器中间件(Downloader Middleware) 下载器中间件是介于Scrapy的request/response处理的钩子框架. 是用于全局修改Scrapy request和respons ...
- imperva系统升级遇见的错误(配置文件的导入导出)
今天心态有点炸了 今天去东兴证券做waf升级.浪费了两天才弄完.把客户都弄得有点急了.好歹原厂的工程师耐心的讲解这才弄完.感谢路哥.... 赶紧总结一下. 事情是这样的.东兴 证券的imperva是v ...
- openjudge-NOI 2.6-1759 最长上升子序列
题目链接:http://noi.openjudge.cn/ch0206/1759/ 题解: 奇怪……之前博客里的o(nlogn)标程在codevs和tyvj上都能AC,偏偏它这里不行 #include ...
- kvm安装准备
到实际情况下,做虚拟化是直接做在真机上. 但实验时,可以在虚拟机上进行.(因为做实验的时候没办法连接到桥接模式的网络,所以使用了NAT方式来连接网络) 在vmware安装centos 64bit fo ...
- 解决IDEA导入Myclipse项目的时候没有识别为Web项目的问题
IDEA在导入一个MyEclipse新建的Web项目的时候,一般会正确检测这个项目是什么项目.不过有时候会出现各种问题. 1. 出现一些Jar包不存在的问题,一般是servlet-api这样的包不存在 ...