2510: 弱题

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 374  Solved: 196

Description

M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。

Input

第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
第2行包含N非负整数ai,表示初始标号为i的球有ai个。

Output

应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。

Sample Input

2 3 2
3 0

Sample Output

1.667
1.333

HINT

【样例说明】

第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。

第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。

【数据规模与约定】

对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;

对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;

对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;

对于40%的数据,M ≤ 1000, K ≤ 1000;

对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

Source

【分析】

  综合题表里面目测的一道【稀少的】可做题。。

  显然,矩阵乘法嘛。。$f[i][j]=f[i-1][j]*\dfrac{m-1}{m}+f[i-1][j-1]*\dfrac{1}{m}$

  然后一个厉害的东西就是A,B是循环矩阵(就是矩阵的下一行是上一行循环右移一位得到的),那么A*B=C的C也是循环矩阵。

  只需求第一行就可以求出整个C。

  所以是$n^2 log$

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1010 int a[Maxn];
int n,m,k; struct node
{
double w[Maxn][Maxn];
}t[]; void mul(int x,int y,int z)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) t[].w[i][j]=;
for(int k=;k<=n;k++)
for(int j=;j<=n;j++)
t[].w[][j]+=t[y].w[][k]*t[z].w[k][j];
for(int j=;j<=n;j++) t[x].w[][j]=t[].w[][j];
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
t[x].w[i][j]=t[x].w[i-][j-==?n:j-];
}
} void qpow(int b)
{
for(int i=;i<=n;i++) for(int j=;j<=n;j++) t[].w[i][j]=;
for(int i=;i<=n;i++) t[].w[i][i]=1.0;
while(b)
{
if(b&) mul(,,);
mul(,,);
b>>=;
}
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++) t[].w[i][j]=;
t[].w[i][i]=1.0-1.0/m;
t[].w[i][i-==?n:i-]=1.0/m;
}
qpow(k);
for(int i=;i<=n;i++)
{
double ans=;
for(int j=;j<=n;j++)
{
ans+=a[j]*t[].w[i][j];
}
printf("%.3lf\n",ans);
}
return ;
}

2017-04-10 20:47:14

【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)的更多相关文章

  1. 【BZOJ2510】弱题 期望DP+循环矩阵乘法

    [BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...

  2. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  3. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  4. [BZOJ 2510]弱题

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 419  Solved: 226[Submit][Status][Discuss] D ...

  5. 「BZOJ2510」弱题(矩阵乘法,降维)

    有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < ...

  6. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

  7. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  8. 「BZOJ2510」弱题

    「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...

  9. BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...

随机推荐

  1. 天梯赛 L2-005 集合相似度 (set容器)

    给定两个整数集合,它们的相似度定义为:Nc/Nt*100%.其中Nc是两个集合都有的不相等整数的个数,Nt是两个集合一共有的不相等整数的个数.你的任务就是计算任意一对给定集合的相似度. 输入格式: 输 ...

  2. redis笔记之两种持久化备份方式(RDB & AOF)

    Redis支持的两种持久化备份方式(RDB & AOF) redis支持两种持久化方式,一种是RDB,一种是AOF. RDB是根据指定的规则定时将内存中的数据备份到硬盘上,AOF是在每次执行命 ...

  3. Entity Framework(EF的Database First方法)

    EntityFramework,是Microsoft的一款ORM(Object-Relation-Mapping)框架.同其它ORM(如,NHibernate,Hibernate)一样, 一是为了使开 ...

  4. thinkphp 漂亮的分页样式

    ---恢复内容开始--- 首先:需要两个文件 page.class.php page.css 1.在TP原有的 page.class.php 文件稍作修改几条代码就可以了, 修改过的地方我会注释, 2 ...

  5. php菜刀分析学习

    这里以eval为例 我们知道, php中的eval能把字符串当代码执行: eval('phpcode'); 注意, 这里的代码要有分号结尾, 我们测试: 我们创建一个最简单的SHELL: <?p ...

  6. linux内存分配方法总结【转】

    转自:http://www.bkjia.com/Linuxjc/443717.html 内存映射结构: 1.32位地址线寻址4G的内存空间,其中0-3G为用户程序所独有,3G-4G为内核占有. 2.s ...

  7. 新装linux系统最基本设置

    1,dns设置:vi /etc/resolv.conf   添加内容:nameserver 8.8.8.8 2,vi设置: vi ~/.bashrc  添加内容:alias vi='vim': 然后执 ...

  8. QWT编译、配置、使用(Qt Creator)

    环境: Win7 32 bit / Qt Creator 3.3.1 / Qt 5.4.1 (msvc2013_opengl, 32 bit) / QWT 6.1.2 QWT, Qt Widgets ...

  9. ntp 控制报文

    //make the procedure into block//2014.7.23 OK//#include "CSocket.h" #define NTP_SERVER_IP ...

  10. oracle相关命令收集-张

    orcle相关命令收集 1,用管理员登陆 /as sysdba:2, 更改用户密码 alter user name identified by password: alter user exptest ...